

www.loftware.com

Loftware ABAP Package V4.5

Label Printing in SAP using Loftware Automation
Implementation Guide
©Loftware 2024.
Rev-7

 2

Contents

INTRODUCTION 5

Distribution of the ABAP Package 5
REQUIREMENTS 6

ARCHITECTURE 7

Overview 7
Loftware Automation configurations 8

Label design 9

Label print and data mapping 11
SETTING UP THE INTEGRATION 13

Deploying Loftware Automation 13

Installing Loftware Automation 13

Deploying triggers 13
Configuring Windows Firewall 14

Configuring TLS/SSL encrypted communication (HTTPS traffic) 15
Generating a subscription key to consume Loftware Cloud APIs 15
Importing ABAP Package transport request 16

Upgrading the ABAP Package 19

Incompatibilities between versions 20
Configuring Destination in SAP 21

Configuring SOA (Web Service) destination 21
Configuring HTTP (RFC) destination (on-premise) 25
Configuring HTTP (RFC) destination (Cloud trigger) 27

TLS/SSL certificates 29
CONFIGURING THE ABAP PACKAGE 30

Configuring system-wide defaults 30

Configuring transaction (process) defaults 31

Structure of “Integrated Process Configuration” table 33
Enabling enhancement spots 35

Enabling built-in output devices in SPAD 35
Support for PI/PO 36

Configuring SAP PI 36

Triggering print request via SAP PI 46
Support for Cloud Platform Integration (CPI) 47

Configuring SAP Integration Suite 47

Configuring access permissions 49
Configuring logical port 49

 3

Configuring Cloud Trigger access 52
USING ABAP PACKAGE FEATURES 53

Configuring the demo transaction 53
Using the demo transaction 53

Requesting a list of printers 56

Printing a label or report 57
Printing labels to cloud printers 57

Previewing a label or report 58

Emailing label preview 58
Adjusting label settings at print-time 59

Checking printer live status 61

Overrides 61

Overriding print settings (label template, printer name, quantity) 61

Overriding printer settings 62
Overriding email settings 62
Logging data to SAP Spooler (SP01) 63

Defining your own Output Device for print jobs in SAP Spooler 65
Printing binary print jobs from SAP 66
Providing a label name 67

Creating a label catalog 68

Requesting label catalog for Loftware Cloud 68
Requesting label catalog for NiceLabel LMS 68
Requesting a list of variables from the label 69
Generating a field catalog 69
Support for label variants 71

Exporting data 72
Communication extendibility 72
CONFIGURING TRANSACTION TO CALL ABAP PACKAGE 74

Enhancement spots 74
Example for outbound deliveries (VL02n) 75

Creating a new output type 76

Using the new output type for processing 76

Label sample with predefined data sources 77
Example for production order (CO02) 78

Configuring the system 78

Printing labels 79
Label sample with predefined data sources 83
ABAP code examples 83

 4

Creating basic print request 83

Dynamically defining the endpoint 84

Creating report style print request 86
Outbound delivery 86

Demo application 89

Print programs 90
DATA EXCHANGE 91

Structure of XML data sent from ABAP Package 91

Structure of “Header” element 92
Structure of “Data” element 95
Structure of Automation’s feedback message 95

Structure of <PrinterList /> 97
Structure of <LabelVariables /> 98

Structure of <LabelCatalog /> 99
API REFERENCE 100

/NICELAB/ namespace 100

ABAP class (API) methods 100

API class /NICELAB/CL_INTERFACE_ROOT 100
Class /NICELAB/CL_INTERFACE_DEMO 102

Class /NICELAB/CL_IF_CONFIG 103

Class /NICELAB/CL_IF_UTIL 104
Class /NICELAB/CL_IF_PRINTER 107

Class /NICELAB/CL_IF_LABEL 107
SUPPORT 109

Online help 109

Troubleshooting 109

Error creating logical port in transaction SOAMANAGER 109

Problem executing “Connection test” in SM59 transaction 109

Failing to create Label Catalog 110

Repairing ABAP Package enhancements after SAP upgrade 111

 5

Introduction

An SAP transport package, formerly known as "development class", groups multiple related development
objects in a single distributable unit that enables transferring data from one SAP installation to another.
Whenever you create a new development object (such as a table, program, etc.) that you want to publish on
another SAP server, you must assign it to a package. After being assigned to an object, the object is placed
into a transport request.

The ABAP Package contains objects that provide a framework for communicating with Loftware Automation
back-end label-printing service. ABAP Package exposes the API that is utilized by SAP applications to send
the data for printing. Once the data has been received from the SAP application, the Package encapsulates it
in an XML message and sends it to Loftware Automation for processing. You can use Web Service (SOA) or
HTTP (RFC type G) communication to Loftware Automation.

Besides label printing, the ABAP Package can also provide label preview (PDF, PNG, or JPEG), report the live
status of the label printer, generate a list of all labels in the document management system (DMS), provide a
list of available printers, a list of variables defined in the label and provide a binary print job into SAP.
NOTE: the printer must support reporting its live statuses.

This document describes the necessary steps to import the ABAP Package to your SAP system and to
configure it.

Distribution of the ABAP Package

You receive the ABAP Package as a ZIP file with the following content:

• Folder ABAP Transport Package. This folder contains the transport package itself. For details on
how to transport the package, see chapter Importing ABAP Package transport request on page 16.

• Folder Automation configuration. This folder contains the Automation configuration (MISX file) and
sample labels. We provide a generic sample label and some sample labels that contain all data
sources from two standard SAP transactions (VL02N and CO02).

o Label.nlbl is a generic sample label used throughout this document.

o DeliveryNote.nlbl is a label for outbound deliveries, when you want to print each item
from a delivery note on a separate label.

o DeliveryNoteReport.nlbl is a label for outbound deliveries, when you want to print all
items from a delivery note in table/report as a shipping document (e.g., A4 or Letter page
size). The .CSV and .VALUES files are sample data files for previewing this label in Loftware
Designer.

o ProductionOrder.nlbl is a label for production orders.

• Folder Documentation. This folder contains the technical documentation, such as this document.

 6

Requirements

The following requirements apply to Loftware:

• Loftware Cloud Business or above for cloud or NiceLabel LMS Enterprise for on-premise.

• Loftware software installed in the default location.1

• PDF reader installed on Windows computer with SAP GUI (to see PDF label previews).

The following minimum requirements apply to SAP:

1. SAP products based on the NetWeaver stack (e.g., ECC/ERP, SCM, EWM).
Enhancement Package 6 (EHP6)
or
On-premise SAP S/4HANA
or
SAP S/4HANA Private Cloud

2. Unicode SAP system

To verify the component version, do the following:

1. In SAP GUI, select System>Status.

2. In System:Status, click the button Component information.

3. SAP_BASIS and SAP_ABA must be at least in release 731.

1 If you use non-default location, you must update the Automation configuration with your non-default path.

 7

Architecture

Overview

ABAP Package is a collection of below-listed software components that simplify integration of label printing
from SAP:

1. ABAP transport package that you install in SAP.

2. Pre-configured Automation Enterprise with SOA (Web Service) and RFC type G (HTTP) triggers. You
can configure the ABAP Package to transfer the data to Automation Enterprise using one of the two
communication types. Additionally, there is a trigger to create the label catalog (a list of all labels in
your DMS).

3. Sample labels prepared with data sources for printing from some standard SAP transactions (such
as Outbound Deliveries - VL02N).

ABAP Package is transported into the SAP system and is available within the /NICELAB/ namespace.

ABAP Package is the connector that binds together the SAP and Loftware ecosystems. On one hand, ABAP
Package receives commands and data from SAP applications, while on the other hand, it communicates with
the Loftware integration system – Loftware Automation.

For better understanding, you can look at ABAP Package as an API for label printing. ABAP Package works
like an SDK (Software Development Kit) for label printing from SAP. It exposes certain methods that you call
from your SAP applications.

The request received from the SAP application is encapsulated in the XML message. ABAP Package sends
the XML content to the integration system (Loftware Automation) for processing. Depending on what the
user wants, Loftware Automation runs various actions. For example, the user might request a label print
action, generation of a label preview, generation of the binary print job, label catalog, information about the
selected label, list of available printers, or label printer’s live status.

 8

When printing labels, Loftware Automation loads the specified label from DMS, merges it with values for
data fields as received in XML, and uses the Loftware printer driver to prepare a print job in Windows
Spooler. For example, if you use Zebra printers, the result is a ZPL (Zebra Programming Language) file in the
Windows Spooler.

NOTE: By default, SAP Spooler is not involved in the process in any way. It is the responsibility of Windows Spooler on
the computer with installed Loftware integration system to send data to the printer. Optionally, you can also command
Loftware Automation to provide the binary print job back to SAP Spooler, so you can also send it to the printer from SAP.

The computer with installed Loftware Automation must meet the following prerequisites:

1. The drivers for your label printers must be installed. You can install printer drivers directly on this
computer, or you can register the drivers from the print server you might have.

2. All printers must be visible to the computer and to the user account under which Automation
Service runs. Loftware Automation on this computer creates print jobs and sends them to the
printers using Windows Spooler. The printers must be accessible for printing.

You create the label templates in Loftware Designer, and you store them in the DMS, where they are
governed by the approval workflows and version control system. DMS also supports role-based access
control (RBAC) and stores the history of all print events (e.g., all name-value pairs are remembered together
with the revision number of the printed label, printer name, and label copies). You can also reprint labels from
the DMS.

Loftware Automation configurations

The ABAP Package bundle provides pre-built Loftware Automation connectors (triggers). You do not have to
configure anything on the Automation’s side. You must just deploy the provided configuration and start the
triggers within.

The ZIP bundle contains two Automation configurations.

• SAP Loftware API V4.5 LC.misx. Use it with your Loftware Cloud account. The configuration also
contains the Cloud trigger (for cloud-to-cloud connectivity).

• SAP Loftware API V4.5 NLLMS.misx. Use it with your Loftware LMS Enterprise product.

Each Loftware Automation configuration contains a few triggers that all provide the same functionality. The
difference between triggers is in the communication type between SAP and Loftware Automation. Choose
the communication type that fits your environment best.

1. SOA (Web Service). Running on port 50000/TCP. It accepts Web Service requests from the ABAP
Package.

2. RFC type G (HTTP). Running on port 50001/TCP. It accepts HTTP requests from the ABAP Package.

3. Cloud trigger (technically, this is also RFC type G (HTTP). In this case, SAP does not communicate
directly with the Automation server (there might not be a direct connection possible). SAP sends the
message to Cloud Trigger API that acts as a proxy and forwards the data to your Automation server
running behind a firewall. This trigger allows cloud-to-cloud connectivity. You do not have to open
any ports on the computer with Automation or the company’s firewall.

4. Label Catalog Async Updates. This trigger is available in the configuration variant for NiceLabel LMS
Enterprise only. This trigger help to generate a list of labels from the Document Management
System.

 9

o The configuration variant for Loftware Cloud uses internal Document API to generate the
catalog and does not need this trigger.

NOTE: If necessary, you can change the port numbers on which the Automation triggers respond. Open the configuration
in Automation Builder and edit it.

Label design

Use Loftware Designer to create and maintain labels. Loftware Designer runs in a Microsoft Windows
environment. This is a graphical designer with an intuitive user interface that business users themselves can
use to create dynamic labels. When you create a dynamic label, you configure label objects to receive data
from data sources called “variables”. When ABAP Package sends the SAP data for printing into Loftware
Automation, that data will be saved in the variables and printed on a label.

When you open a sample label template label.nlbl (provided with the ABAP Package) in Loftware
Designer, you can see the label contains variables, such as FIELD1, FIELD2, FIELD3, etc. These variables are
linked with some of the label objects and provide values for those objects at print time.

 10

Variables must have the same names as the data fields in the SAP application from which you execute label
printing. You can create variables on the label manually, you can import variables from existing labels, or you
can import variables from other supported data files (such as XML).

The ABAP Package contains sample labels for some SAP standard transactions (such as VL02N). The
sample labels already contain all variables that exist in the associated transaction. You can immediately use
the variables as data sources for your label objects. You can also import these pre-defined data sources into
other labels.

For example, the DeliveryNote.nlbl label contains all variables from the outbound deliveries transaction
(VL02N). There is a prefix “VBDPL” defined for each variable, as used in SAP.

 11

Label print and data mapping

If you do not provide any value to label variables, the sample label template label.nlbl prints like the
following.

1. All dynamic label objects that expect to receive some data inputs are empty as no value has been
provided for them.

2. Only static label objects get printed.

To print data on a label, you must send data (name-value pairs) from SAP into the ABAP Package.

 12

When ABAP Package receives data (name-value pairs) from the SAP application, it encapsulates them in
XML and sends them into Loftware Automation for processing. The name-value pairs are saved in the “Data”
element in the XML message. Loftware Automation extracts all name-value pairs and sends them to the
label.

NOTE: For more information about the XML structure and data exchange between ABAP Package and
Loftware Automation, see the chapter Data exchange on page 91.

Data mapping is performed by the matching names:

1. If a field in XML finds a match in the list of variables defined in the label, that variable gets populated
with the value from XML.

2. If the match is not found in the label that field from XML is ignored.

For example, if you provide the following data into the demo transaction:2

FIELD NAME FIELD VALUE

FIELD1 Loftware

FIELD2 DEMO

FIELD3 12345

FIELD4 1234567890

FIELD5 123456789012

The label printout looks like this.

Provided values have been assigned to the label variables on the same name and then used with the label
objects.

2 Learn more about how to use demo transaction in the chapter Configuring the ABAP Package.

 13

Setting up the integration

Deploying Loftware Automation

The ABAP Package ships with pre-configured Loftware Automation. To deploy the configuration, you must
load the configuration into Loftware Automation Manager, start the triggers and reconfigure Windows
Firewall to allow inbound connections on ports associated with the configuration.

Loftware Automation comes pre-build with two different configurations. Make sure to load and activate the
one that matches your software product.

Installing Loftware Automation
Loftware Automation is bundled in the installation of Loftware desktop applications. The required module to
run the Automation configuration for the ABAP Package is “Automation”. It will run as the Windows service
application.

NOTE: The best practice approach is to run the Automation Service under credentials of a real user account,
not Local System account.

For detailed Loftware installation steps, see Loftware Installation Guide.

Deploying triggers
Do the following:

1. Go to the computer, where you have installed Loftware Automation.

https://help.loftware.com/cloud/en/Content/Installation/UUID-4aa20bb2-fcb5-abb1-259e-1ebeec5dd497.html?tocpath=Loftware%20Installation%20Guide%7C_____0

 14

2. Make sure you have activated the Loftware software.

3. Save all Loftware Automation files to a folder. You must copy all files from the Automation
Configuration folder from ZIP file. Use the Automation folder that matches your Loftware product
(Loftware Cloud or NiceLabel LMS).

4. Run Loftware Automation Manager application.

5. In the Triggers tab, click the +Add button.

6. In the Open window, browse to your .MISX file and click Open.
Automation Manager loads the configuration and lists the triggers in the right-hand pane.

7. Select all triggers and click Start on any of the triggers. All triggers will start. Triggers’ icons turn into
a green color and the status change to “Running”.

a. You can later deactivate the triggers you don’t need. Typically, you would enable just one
trigger type.

NOTE: Loftware software must be activated or running in a trial mode to be able to start the triggers.

Configuring Windows Firewall
You must configure the firewall on a Windows computer to allow inbound communication to ports
configured for SOA (Web Service trigger) and RFC type G (HTTP trigger). You must allow connection to the
port for the communication mode you intend to use. Typically, you would open just one port.

NOTE: You do not have to open any port if you plan to run the Cloud trigger.

To create an inbound rule, do the following:

1. On a computer running Automation, on the Start menu, choose Control Panel, choose System and
Security, and then choose Windows Firewall.

2. In the navigation pane, choose Advanced settings.

3. In the Windows Firewall with Advanced Security window, in the navigation pane, choose Inbound
Rules, and then in the Actions pane, choose New Rule.

4. On the Rule Type page, choose Port, and then choose the Next button.

5. On the Protocol and Ports page, choose Specific local ports, and then enter the port number you
want to open.

a. If you plan to use SOA (Web Service trigger) communication, open port 50000.

b. If you plan to use RFC type G (HTTP trigger) communication, open port 50001.

 15

6. Click Next.

7. On the Actions page, select Allow the connection and click Next.

8. On the Profile page, choose the profiles, and click Next.

9. On the Name page, type a name for the rule, and click Finish.

Configuring TLS/SSL encrypted communication (HTTPS traffic)
Loftware Automation configuration that ships with the ABAP Package does not have SSL/TLS
communication enabled. The data will be exchanged over the regular HTTP traffic.

If necessary, SSL/TLS can be enabled by reconfiguring the provided Automation configuration. For more
information about how to configure Automation, see the chapter Using Secure Transport Layer (HTTPS).

Generating a subscription key to consume Loftware Cloud APIs
NOTE: Cloud-to-cloud connectivity is not available for on-premise NiceLabel products.

You need a subscription key to consume APIs available with Loftware Cloud Business (or above) products. A
subscription key is used for API authentication in the Loftware software. Loftware Cloud runs on multi-tenant
software architecture. The Loftware Cloud API endpoint created with the Automation configuration for ABAP
Package is the same for all Loftware customers. When you activate the Cloud Trigger in the provided
Automation configuration, it will create an endpoint
https://labelcloudapi.onnicelabel.com/Trigger/v1/CloudTrigger/SapNiceLabelApi in your Loftware
subscription. When some other customer activates the same Cloud Trigger, the same endpoint will be
created for them. Based on the subscription in your HTTP request the API tells the customers apart and
forwards the message to the correct Automation server.

You need a subscription key in the following cases:

• Enable cloud-to-cloud connectivity between your SAP system and Loftware software.

• Use PI/PO integration and your Automation is not deployed in the same LAN as your SAP system, so
you need to use Cloud trigger API to access Automation's endpoint.

• Use CPI integration and want to access Automation’s endpoint that might be deployed behind
firewalls or disparate networks.

• Get a list of available label templates (Label Catalog).

• Get a list of available cloud-connected printers.

• Print labels to cloud-connected printers.

Generate a subscription key
This is a summary of the steps you must complete to get a subscription key:

1. Add a Cloud Integration in your Control Center (Integrations>Cloud Integrations).

2. Create an account in the Developer Portal.

3. Register the Cloud integration from Control Center in the Developer Portal.

4. In Developer Portal, create a product Loftware Cloud.

5. Activate the product Loftware Cloud to receive a subscription key.

The detailed guide to complete the above steps are provided in the chapter Cloud integrations in the Control
Center user guide.

Add items (custom IDs) to the configuration table
The next step is to add two custom items to the configuration table.

https://help.nicelabel.com/hc/en-001/articles/360020970577-Using-Secure-Transport-Layer-HTTPS-
https://labelcloudapi.onnicelabel.com/Trigger/v1/CloudTrigger/SapNiceLabelApi
https://help.loftware.com/cloud/en/Content/ControlCenter/UUID-67a33d50-e025-04e8-ccfc-e923770e243c.html?tocpath=Loftware%20Control%C2%A0Center%20User%20Guide%7CIntegrations%7C_____1

 16

1. Run transaction /NICELAB/IF_CTRL.

2. Add item API-VERSION with value “v1”.

3. Add item OCP-APIM-SUBSCRIPTION-KEY with the value of the primary or secondary key you
received from the Developer Portal (for the Label Cloud subscription you created).

For details see Configuring system-wide defaults chapter in this document.

When the above two Custom IDs exist in the configuration table, the ABAP Package will always include them
in the request to Loftware Automation in two places:

• In the custom HTTP headers of the HTTP request. These are authentication requirements so that
the ABAP Package can deliver data into Cloud trigger published in Loftware Automation.

• Inside the <Header /> element in the XML payload. These are authentication requirements for
Automation to use Loftware Cloud APIs (to generate the label catalog, to get a list of cloud-
connected printers, and to print labels to cloud-connected printers).

Importing ABAP Package transport request

To import the ABAP Package transport request, do the following:

1. Copy the transport package files into the appropriate folder on your SAP system.
a. The R*.ECC file goes into /usr/sap/trans/data folder.
b. The K*.ECC file goes into /usr/sap/trans/cofiles folder.

2. In SAP GUI, run the transaction STMS.

3. Click Import Overview .
4. Double-click the import queue of the target system (ECC in the example below).

 17

5. Select Extras>Other Requests>Add.

6. Enter the Transp. Request number.

You can click the Search Help and search for the transport request in the list.

7. Click Continue .

The Add Transport Request window opens.
8. Click Yes.

The request is added to the import queue.

9. Select the request in the list.

 18

10. Click Import Request .
The Import Transport Request window opens.

11. In Target Client, enter the client number.
12. If you are importing the transport request on the SAP S/4HANA system, also do the following:

a. Go to the Options tab.
b. Enable the option Ignore Invalid Component Version.

13. Click Continue .

 19

14. Click Yes to confirm the import.

15. The checkmark confirms that the import finished successfully.

This import must be performed by an SAP Basis administrator.

Upgrading the ABAP Package

When upgrading the ABAP Package to a newer version, follow the instructions for the transport request
import as provided in the topic Importing ABAP Package transport request on page 16, but with a single
exception.

In the Import Transport Request window, go to the Options tab and make sure the option Overwrite
Originals is selected.

NOTE: If you are importing the transport request on the SAP S/4HANA system, also enable the option Ignore Invalid
Component Version.

 20

Incompatibilities between versions

V2

• Location of the constants. In V1, the constants were saved in the /NICELAB/CL_INTERFACE_ROOT
class. In V2, constants were moved to public interface /NICELAB/CL_IF_UTIL. If you reference the
constants in your custom classes where you use the ABAP Package, you will have to update the
custom code to point to /NICELAB/CL_IF_UTIL.

V3

• Recreating logical ports for Web Service consumer proxy. In V3, ABAP Package uses a new
consumer proxy. You have to recreate the logical port when you use Web Service communication.

V4

• Support for multi-server landscape. ABAP Package V4 supports multiple Automation endpoints, not
just one. The process configuration (business rules) table (/NICELAB/V_IF_PR, also accessible via
tcode /NICELAB/IF_PROC) is expanded to support the endpoint configuration. Each item in the table
also defined the field OperMode, where you define the type of the endpoint, and the field Endpoint ID,
where you define the name of the endpoint. For example, the OperMode HTTP Request and Endpoint
ID EMEA would send a request to Automation using outbound RFC call to an RFC destination EMEA
(as defined in tcode SM59).

When you upgrade to ABAP Package V4 your existing process configuration table will be expanded
with new fields. The values for the new fields will be taken from your existing interface configuration
(tcode /NICELAB/IF_CTRL), so there should be no upgrade issues.

 21

The print programs provided with the ABAP Package have also been updated to support the new
process configuration table (/NICELAB/OUTPUT_PROCESSING and /NICELAB/PSFC_OBJECT_LIST).

• Label catalog generation. When you have a Loftware Cloud product, Automation uses Document API
to create a label catalog, not the command-line utility as in previous versions. The Document API
provides a faster and synchronous response. To use the Document API, you have to provide the
subscription key in your payload. Automation will use if for authentication when accessing the
Document API. For more information, see the chapter Requesting label catalog for Loftware Cloud.

• The content of Revisions fields in the label catalog. In V4, Automation will return the version number
of the last revision of the label template. The field will contain a single value, no longer all available
versions. The returned version number depends on the access role to which the user running the
Automation server belongs.

Configuring Destination in SAP

The ABAP Package collects the label printing data, encapsulates it in an XML message, and sends a request
to Loftware Automation. The outbound request can use SOA (Web Service) or RFC type G (HTTP)
communication type.

Configuring SOA (Web Service) destination
The necessary configuration step involves defining the Logical Port, through which the ABAP Package sends
the request to Loftware Automation.

The logical port defines the transport parameters for reaching Loftware Automation. The two most
important parameters are the computer name and port number. If you want to use a Web Service destination,
you must define at least one logical port.

Configuring the logical port
To configure the logical port, do the following:

1. In SAP GUI, run the transaction SOAMANAGER.
The SOA Management opens in the browser.

2. In the Service Administration tab, click Web Service Configuration.

3. In Search by drop-down box, select Consumer Proxy.

 22

4. In Search Pattern, enter the name of the consumer proxy as provided by the ABAP Package. Enter
/NICELAB/CO_NICELABEL_OUT and click Go.

5. Select the /NICELAB/CO_NICELABEL_OUT entry in the search results and click Apply Selection.

The consumer proxy details are displayed.
6. Go to the Configurations tab and click Create.

A new SOA Management window opens displaying the configuration details.

7. In the Logical Port Name field, enter the name that identifies this logical port.
8. In the Description field, enter the text that describes the logical port.
9. For Configuration Type, select WSDL Based Configuration.
10. If you have access to the Loftware Automation and if the Web Service trigger has already been

deployed, select Via HTTP Access for WSDL Base. In URL for WSDL Access, enter the path to the
Web Service trigger as published in the Loftware Automation.

 23

In this example, Loftware Automation is installed on the Windows server with name automation. The
Web Service trigger has been configured on port 50000.

11. You can also import the WSDL from a file. Initially, you must use a web browser to open the URL to
Loftware Automation, load the WSDL from it and save the content to a file.

To get WSDL and save it to disk, do the following:

a. Open the following URL in a browser:
http://<automation>:50000/?wsdl

Replace the name <automation> with the name of the Windows computer, where you have
installed Loftware Automation.

b. Right-click the content in the browser and select Save As. Save the WSDL content to file on
local disk.

In SOA Management, select Via file, then click Browse and select the WSDL file you have just saved.

IMPORTANT: No matter which option you use to get the WSDL (Via HTTP Access or Via File), the
URL endpoint in the WDSL will contain the hostname of the server where Automation is installed.
This is fine, when you connect to the Automation using local area network. However, if Automation is
installed outside of LAN and you need fully qualified domain name (FQDN) to connect, make sure
you update the URL endpoint to match your FQDN.

NOTE: When you click the Apply Settings button to apply the WSDL file, you must have the communication path
to Loftware Automation open, or SOAMANAGER will report a problem “Error in WSDL parsing: Exception
occurred in library handler”.

 24

12. Click Apply Settings.

The additional logical port configuration appears.
13. Review the parameters. Normally, you do not need to change anything.
14. Click Save.

Testing the logical port
To test the configured logical port, do the following:

1. In the Details of Consumer Proxy section, select the logical port you have created.

2. Click Ping Web Service.

3. Scroll up to the top of the browser window to see the feedback from the test.

4. You should see the following message:

Web service ping failed (RC=400). Service Ping ERROR: Bad Request

This tells you the message was successfully sent to the Web Service in Loftware Automation, just
the request was not formed in the structure as expected by Loftware Automation.

5. If you see the following message:

SRT Framework exception: Service Ping ERROR: Error when calling SOAP Runtime functions: SRT:
Processing error in Internet Communication Framework: ("ICF Error when receiving the response:
ICM_HTTP_CONNECTION_FAILED")

it tells you that the connection to the Web Service in Loftware Automation is not possible. You will
have to resolve the problem.

Verify the following problems:

a. The triggers in Loftware Automation are not started.

b. Communication to Loftware Automation is not possible. Verify the firewall settings on the
computer with Loftware Automation to allow inbound connectivity.

For more information, see Configuring Windows Firewall on page 14.

c. Is there a system-wide policy applied to the SAP server to prevent outbound connectivity to
non-authorized destinations?

 25

Configuring HTTP (RFC) destination (on-premise)
The necessary configuration step involves defining the HTTP destination to which the ABAP Package sends
the request to Loftware Automation. The two most important parameters are the target host (computer
name) and service number (port number).

In this scenario, SAP can communicate directly with the Loftware Automation. Both are running in the same
network and connection to the Automation’s IP address and configured port number is possible.

Configuring destination
To configure the HTTP (RFC) destination, do the following:

1. In SAP GUI, run the transaction SM59.
The Configuration of RFC Connections window appears.

2. Click Create .
3. In RFC Destination, enter the name of your destination. Use a descriptive name that will later be used

to reference the target Loftware Automation server.

 26

4. For Connection Type, select G. This is the HTTP Connection to External Server.
5. In the Description section, enter a comment to describe what this destination will be used for.
6. Go to the Technical Settings tab.
7. In the Target Host, enter the host name of the server with installed Loftware Automation.
8. In the Service No., enter the port number, on which the HTTP trigger has been configured in Loftware

Automation. The configuration provided with ABAP Package defines the HTTP trigger on port
50001.

9. In Path Prefix, enter the path, on which the HTTP trigger has been configured in Loftware
Automation. The configuration provided with ABAP Package uses a root path (/).

If you need to update the existing HTTP (RFC) destination, run the transaction SM59 again, select your RFC

destination in the HTTP Connections to External Server list and click Change .

Testing the destination
To test the RFC type G (HTTP) destination, do the following:

1. Make sure the Loftware Automation has been configured and enabled as documented in the chapter
Deploying Loftware Automation.

2. In the SM59 transaction, open properties of the HTTP (RFC) destination you have just configured.

3. Click the Connection Test button.

4. You receive the following:

Status HTTP Response: 500
Status text: An error occurred while trying to execute the "Use Data Filter" action. The error occurs
while executing the filter "XML". Cannot load the XML file <…>”! Error in XML format. System error
message: Root element is missing.

5. This is perfectly OK, even if you have not received status 200 and text OK.

You have received a response from Automation, although an erroneous one. SAP connection test
does not contain any valid data that Automation trigger can recognize; therefore Automation

 27

responds with an error.

This response is proof that the RFC type G (HTTP) destination is configured correctly and you can
send data to Loftware Automation.

Configuring HTTP (RFC) destination (Cloud trigger)
NOTE: You must have a Loftware Cloud Business subscription (or higher) to run Cloud trigger.

The necessary configuration step involves defining the HTTP destination to which the ABAP Package sends
the request to Loftware Automation. The most important parameters are target host (computer name),
service number (port number), and path prefix.

In this scenario, SAP cannot communicate directly with the Loftware Automation. A typical scenario might
be SAP S/4 HANA (on-premise variant) running in the hosted virtual environment without a VPN connection
down to your location. Loftware Automation is installed on-premise and has a connection to the label
printers, but SAP cannot send messages to it directly.

Cloud trigger acts as a proxy in Loftware Cloud. On one hand, Loftware Automation establishes an outbound
connection towards Loftware Cloud, on the other hand, SAP sends the message into the Loftware Cloud API.
The message is then forwarded down to Loftware Automation for processing.

Configuring destination
To configure the HTTP (RFC) destination for Cloud trigger, do the following:

1. In SAP GUI, run the transaction SM59.
The Configuration of RFC Connections window appears.

2. Click Create .

 28

3. In RFC Destination, enter the name of your destination. Use a descriptive name that will later be used
to reference the target Loftware Automation server.

4. For Connection Type, select G. This is the HTTP Connection to External Server.
5. In the Description section, enter a comment to describe what this destination will be used for.
6. Go to the Technical Settings tab.
7. In the Target Host, enter “labelcloudapi.onnicelabel.com“.
8. In the Service No., enter “443“.
9. In the Path Prefix, enter “/Trigger/v1/CloudTrigger/SapNiceLabelApi“.
10. Go to Logon & Security tab.
11. In Security Options, select Active for SSL.

If you need to update the existing HTTP (RFC) destination, run the transaction SM59 again, select your RFC

destination in the HTTP Connections to External Server list and click Change .

The next step is to configure the custom HTTP headers that must be included with each HTTP call to the
Cloud trigger. The headers are configured with the following Custom IDs in the configuration table:

1. API-VERSION

2. OCP-APIM-SUBSCRIPTION-KEY

For more information on how to obtain your subscription key and configure it for the ABAP Package, see the
following:

1. The chapter Generating a subscription key to consume Loftware Cloud APIs in this document.

2. The chapter Configuring system-wide defaults in this document.

3. The chapter Cloud integrations in the Loftware Control Center user guide.

4. The chapter Cloud trigger in the Loftware Automation user guide.

https://help.loftware.com/cloud/en/Content/ControlCenter/UUID-67a33d50-e025-04e8-ccfc-e923770e243c.html?tocpath=Loftware%20Control%20Center%20User%20Guide%7CIntegrations%7C_____1
https://help.loftware.com/cloud/en/Content/Automation/UUID-8556c353-e195-bbff-1fe8-846813b5aa6f.html?tocpath=Loftware%20Automation%20User%20Guide%7CUnderstanding%20Triggers%7C_____7

 29

TLS/SSL certificates
When you have defined your endpoint with data encryption (HTTPS), there is one additional configuration
step necessary in your SAP system. You must add the certificate to SAP Trust Manager. Use the transaction
code STRUSTSSO2. Your SAP Basis team should be able to help you with this task.

For Web Service (SOA) or HTTP (RFC) triggers you own the certificate and already have it.

For Cloud trigger, the endpoint is in the Loftware Cloud. You can download the certificate in your browser.

Do the following:

1. Open your Control Center in the browser.
2. Click the View site information button.
3. Dependent on your browser do:

a. In Chrome, select Connection is secure > Certificate is valid.
b. In Edge, select Connection is secure then click the icon for Show certificate (upper right

corner).
4. In Certificate Viewer dialog box, go to Details tab and click Export. Now you have the certificate

that you can upload in SAP.

 30

Configuring the ABAP Package

When using the ABAP Package to send label printing requests to Loftware Automation, you must provide the
mandatory parameters with each request. Typically, these parameters are label name, printer name, label
object values, destination at which Loftware Automation listens for requests, etc.

Some parameters, for example, label object values, are unique for each request. You must send unique
parameters with each request. On the other hand, some parameters are the same for each request. An
example of such a static parameter is the Loftware Automation destination (Web Service or HTTP request).

You can save these static parameters in a configuration table. If the requests from your SAP application do
not provide any values for static parameters, the ABAP Package uses the default values from your
configuration table.

Configuring system-wide defaults

ABAP Package uses the configuration table for label printing defaults. These printing defaults include printer
name, label name, default SOA (Web Service), and RFC type G (HTTP) destinations. If you do not provide
these parameters in the request from your ABAP code, the ABAP package uses the defaults from the
configuration table.

NOTE: This is an optional configuration. You do not have to use this table. The table can remain empty if you intend to
provide the required parameters with each request.

To change the system-wide defaults:

1. In SAP GUI, run the transaction /NICELAB/IF_CTRL.
The display view of the Loftware Interface Configuration table appears.

2. By default, the table is empty.
You should include value at least for OPERATION_MODE and then one of HTTP_RFC of SOA_LP (the
communication mode you intend to use).

3. To set the defaults, click Display -> Change button , make changes, and click Save .

 31

The following configurable parameters (Config ID) are available:
CONFIG ID DESCRIPTION
OPERATION_MODE Defines the default communication mode towards Loftware Automation.

Possible values are SOA (to use Web Service communication) or HTTP (to
use RFC type G communication).

SOA_LP Defines the default logical port for the SOA (Web Service) call. Type the name
of the logical port you have previously defined in the transaction
SOAMANAGER.

HTTP_RFC Defines the default RFC type G (HTTP) destination. Type the name of the
HTTP Connection to the External Server (type G) that you have previously
defined in the transaction SM59.

API-VERSION Defines the Cloud trigger API version. This is sent as a custom header in the
HTTP call to Cloud trigger API.

OCP-APIM-
SUBSCRIPTION-KEY

Defines the Cloud trigger subscription key. The key authorizes SAP to
execute the HTTP call to the Cloud trigger. You need this key to:

• Get a list of available cloud-connected printer

• Print to cloud-connected printers

• Get a list of label templates from the DMS.
Obtaining this key is self-service action in the management of your Loftware
Cloud subscription (see a chapter Generating a subscription key to consume
Loftware Cloud APIs).

PRINTER_STATUS Specifies if ABAP Package should send the request for the printer live status
or not. Possible values are True or False.

WRITE_SPOOL Specifies if ABAP Package logs the communication details received from
Loftware Automation in the SAP Spooler. The possible values are True or
False.

CATALOG_ROOT Defines the folder in your DMS which contains labels and subfolders with
labels. If no value is provided, the catalog will be created from the root folder
in the DMS.

DATA_MODEL Specifies if ABAP Package should send the request for the data model file
(Field Catalog). Possible values are True or False. Use this while you design
the label templates in DEV. You only need to execute it once per a different
Field Catalog. Do not enable it on PROD, you don’t need this functionality in
production.

NOTE: The “True” and “False” values are case-sensitive so make sure to provide them correctly (with the capital initial).

Configuring transaction (process) defaults

Configuration table for transaction defaults is a part of the ABAP Package. Use this table to specify the
default values for basic parameters. These basic parameters depend on the calling application (transaction
code).

The print programs for supported standard SAP transactions that come with ABAP Package also use the
defaults from this configuration table. For more information about the supported standard transactions and
provided print programs, see chapter Configuring transaction to call ABAP Package on page 74.

The purpose of the configuration table is to simplify the label printing process. Because of the configuration
table, users do not need to know the exact names of certain technical parameters, such as label or printer
names used on the Loftware Automation server.

 32

If the calling application does not provide specific parameters, ABAP Package uses the values for those
specific fields from the configuration table (provided that the default value is configured).

The currently supported parameters per process are label name, printer name, and label preview. These
options can be defined per user. In this case, each user can print to his printer without affecting the system
for other users. The alternative option is to define these options as a system-wide default for all users.

NOTE: When you define the username as an asterisk “*” the ABAP Package applies the settings for all SAP users without
individually defined defaults.

The instructions below provide an example configuration for the outbound delivery process (transaction
VL02). In this configuration, the processing of output triggers the label print:

1. In SAP GUI, run the transaction SM31.
The window Maintain Table Views: Initial Screen appears.
In Table/View, type /NICELAB/V_IF_PR.

NOTE: You can also run a transaction /NICELAB/IF_PROC to open the table view.

2. Click Display.
The Loftware Interface: Integrated Process Configuration details window appears. By default, the
table is empty.

3. Click Display -> Change button.
4. To add a new entry in the table, click New entries.

a. For Process, type VL02.
b. For Key1, type ZNLA. This field defines the Output Type that you select in Outbound

Delivery.
c. For Key2, type * (asterisk). This field is not used for Outbound Delivery.
d. For User Name, type the name of the SAP user for whom you want to define the default

settings (you can type * (asterisk) and the rule will apply to all users).
e. For OperMode, select the operation mode (the type of connection to the Automation server

that you have configured for your system).
f. For Endpoint ID, type the name of the defined endpoint you have configured in your system.
g. For Assigned Printer, select the name of the printer available on the respective Loftware

Automation system. If the list is empty, you have to send a request for a list of printers on
the target Automation system. The easiest method is to click Get Printers button in the
provided demo transaction (/NICELAB/IF_DEMO).

h. For Label Name, type the name of the label to print.
i. For Response format, type the format of the label preview to receive (PDF, PNG, JPEG). This

setting is used, when you request a label preview.

 33

j. For Report style, enable the feature if you want to print items in a report-style document (A4
or Letter page size). In this case, ABAP Package encapsulates the iterable data for the
report. In most cases, you will have this field set to False.

For empty fields use an asterisk as value - “*”.

5. Click Save or press Ctrl+S.

This is an example of the item configured in the Process Configuration table:

In the above example, when ABAP Package receives the label printing request from Outbound Delivery
(tcode VL02N) for any user and the selected Output Type is ZNLA, the label DeliveryNote.nlbl prints to
printer Zebra_ZD420-300dpi_ZPL_Saso. Because Report Style Print is false, each item from the delivery will
print on a separate label (you will receive as many labels as there are items in a delivery). The print request is
sent as RFC request (HTTP Request) to RFC destination EMEA (as defined in tcode SM59).

In the above example, the criteria to pick up default print settings are a transaction (process), key 1, and
user. If you need additional criteria (like document type, company code, plant, etc.) you can use the
remaining generic Key field (Key2) also available in the table, to maintain the configuration. However, if you
decide to use additional Key fields, you also must adapt your ABAP coding to check for the generic key
columns.

The configuration table is used in the print programs delivered with the ABAP Package. You can also use the
table for the print programs you have developed yourself for other transactions.

Structure of “Integrated Process Configuration” table
See the structure /NICELAB/V_IF_PR.

The table contains business rules configured for label printing from SAP transactions. ABAP Package uses
this table to apply rules in the print programs provided with the ABAP Package for the supported
transactions.

 34

You can also use this table to configure print rules from your custom print programs.

FIELD NAME FIELD DESCRIPTION
Process Specifies the process name from which print request is initiated and that will

trigger the rule processing.
Key 1 The custom key that you can use in your print programs to create business

rules. In the provided print programs, the key is used as follows:

• /NICELAB/OUTPUT_PROCESSING (for VL02n): the key is used to
define the output type for outbound delivery the Output Type (e.g.,
LD00).

• /NICELAB/PSFC_OBJECT_LIST (for CO02): the key is used to define
the order type for production orders.

Key 2 The custom key that you can use in your print programs to create business
rules. In the provided print programs, the key is used as follows:

• /NICELAB/OUTPUT_PROCESSING (for VL02n): not used. Use * (the
asterisk) as the value.

• /NICELAB/PSFC_OBJECT_LIST (for CO02): the key is used to define
the plant.

User Name Specifies the name of the user to whom the rule applies. Use * (asterisk) to
apply a rule to all users.

OperMode Specifies the operation mode – how will ABAP Package communicate with
the Automation backend.
The possible options are:

• SOAP Proxy Call: Your Automation endpoint is accessible via a SOAP
call.

• HTTP Request: Your Automation endpoint is accessible via an HTTP
REST call.

• SAP PI (Cloud Trigger Endpoint): Your Automation endpoint is
accessible via an HTTP REST call through PI/PO infrastructure.

• SAP PI: Your Automation endpoint is accessible via a SOAP call
through PI/PO infrastructure.

• SAP Cloud Platform Integration: Your Automation endpoint is
accessible via a SOAP call through SAP CPI infrastructure (routed to
Automation’s HTTP REST endpoint – Cloud trigger).

Endpoint ID Specifies the ID for your endpoint. For example, when you select SOAP Proxy
Call, this would be the Logical Port defined in tcode SOAMANAGER. When
you select HTTP Request, this would be the RFC Destination defined in tcode
SM59.

Assigned Printer Specified the printer queue name as available from the selected
OperMode/Endpoint ID destination.

Label Name Specifies the label template name that you want to print.
RespFormat Specifies the format of the label preview, if you have requested a label

preview. The allowable values are PDF, PNG, and JPEG.
Rep. Style Specifies whether you will provide the values for a report-style output. For

example, this would be A4 or Letter label template with multiple items printed
on the same page for the shipment documentation.

 35

Enabling enhancement spots

For more information about what are enhancement spots, see chapter Enhancement spots on page 74.

Configuration table for enhancement spots is a part of the ABAP Package. Use this table to enable
enhancement spots for the supported standard SAP applications.

When enhancement spots are enabled and users produce standard outputs in SAP, the enhancement spots
execute a code to seamlessly send the transaction data and commands into ABAP Package. The Loftware
Automation backend prints the transaction data on the associated label.

To enable the enhancement spot for SAP transactions:

1. In SAP GUI, run the transaction /NICELAB/IF_ENHS.
The list of available enhancement spots will display.

2. Click Display -> Change button.

3. Configure details for each displayed enhancement ID.

a. Enh. Active. Specifies whether the enhancement spot for the selected output is active.

b. Assigned Printer. Specifies the name of the printer driver that prints labels. This is the name
of the Windows printer driver installed on the computer with Loftware Automation.

c. Label Name. Specifies the label name that prints for the selected output. For more
information on the label names, see chapter Providing a label name on page 67.

d. RespFormat. Specifies the graphical format for the label preview.

Figure 1: List of available transactions with enabled enhancement spots

Enabling built-in output devices in SPAD

NOTE: Complete the steps in this chapter if you intend to log communication with the Loftware integration system to
SAP Spooler.

ABAP Package also transports the output devices that are associated with entries in SAP Spooler after
enabling the Write to Spool functionality.

Each SAP Spooler entry is associated with an output device. ABAP Package transports two output devices:

• NiceLabel Request To Spool (NLRS). Most entries are associated with this output device.

 36

• NiceLabel Raw Printer (NLBN). This output device is used for entries that store the binary print job.

After you transport the ABAP Package, the new output devices are in a locked state.

To enable the output device:

1. In SAP GUI, run tcode SPAD.

2. In Output Devices, type NiceLabel Request To Spool and press Enter.

3. Click the Change button or press F8.

4. In Spool Server, select your server.

5. Click Save button or press Ctrl+S.

Repeat the above steps also for the output device NiceLabel Raw Printer.

You can also associate the print job in SAP Spooler with your specific output device. See the chapter
Defining your own Output Device for print jobs in SAP Spooler on page 65.

Support for PI/PO

Loftware provides PI/PO configuration that will connect to the HTTP SOAP (Web Services) endpoint or the
HTTP REST (Cloud trigger) endpoint in Loftware Automation and provide the synchronous communication
framework.

Configuring SAP PI

To configure SAP PI to accept messages from the ABAP Package and communicate them with the endpoint
in Loftware Automation, do the following:

1. Log on to your SAP NetWeaver – Process Integration console.

2. Run Integration Builder.

3. In the Tools menu, select Import Design Objects.

 37

Click Client.

Browse for the file NICELABEL_1.0_of_nicelabel.com.tpz included in the ABAP Package bundle. See
the folder \Integrations\PI-PO Configuration.

Click Import.

 38

4. The next step is creating a new Business Component for your Loftware target system.
Click New.
In Create Object window, select Business Component. For Communication Component, enter
“NICELABEL”. You can leave Inbound Interfaces and Communication Channels empty.
Save the component.

5. Create a new Configuration Scenario.

For the Type of ED Repository Model, select Process Integration Scenario.

6. For the Name of the ES Repository Model Reference, browse for the NiceLabel scenario.

 39

7. Click Create button to generate the Configuration Scenario.

The Edit Configuration Scenario window will open.

8. Click Model Configuration.

 40

9. Select Sender Template.
For Communication Component in Business System Component for A2A, select the sender SAP
system. This is a source SAP system that has installed the ABAP Package and will send data into
the PI.

In this example, we have selected the ERP_PRD system.

10. Select NiceLabel Template.
For Communication Component in Business System Component for A2A, select the target Business
System, where Loftware Automation is installed.

In Choose Communication Component window, change the value of Communication Component
Type to Business Component.

 41

In the list of Communication Components, select NICELABEL. This is the business component you
created earlier in these instructions.

Click Apply.

 42

11. Click on the arrow between SendTrigger and ReceivedTrigger objects to display the Communication
Channel fields.

12. In Sender Business System Components, select the Communication Channel.

13. In the Select Object window, select the existing Communication Channel already defined in the
source ERP system. If you have PI implemented, this Communication Channel already exists.

 43

Click Apply.

14. In Receiver Business System Components, select the Communication Channel.

15. Click Create Communication Channel with Template.

 44

Click Continue through the Create Communication Channel steps.
Click Finish.

16. Click Create Configuration Objects...

17. In General, select Generation.
Click Start.

 45

After the objects have been created, close the summary screen.

18. Click Apply.

19. Close the Edit Configuration Scenario window.
The new configuration scenario is created.

Select the communication channel SOAPReceiverTrigger (highlighted in the screenshot).
Properties of the communication channel will display in a panel on the right.

20. Click the Change icon to unlock editing.
In Connection Parameters, enter the correct value for Target URL to use the server, where your
Loftware Automation is installed. For <host> enter the hostname or IP address of the server, for
<port> enter 50000.

Make sure to include the trailing slash character (/) in the Target URL.

 46

Close the Edit Communication Channel window.

21. Click Change Lists tab to display the list of changed objects.
Right-click the Standard change list item and select Activate.

In Activate change list, click Activate.

Click Close.

Your PI/PO is now ready for ABAP Package to send data into it.

Triggering print request via SAP PI
On the SAP side, the same ABAP proxy class is used to call the Loftware web service, regardless of whether
you use direct communication (SAP <-> Loftware) or communication via SAP PI (SAP <-> SAP PI <->
Loftware.

If you would like to use communication via SAP PI, then it is enough to not specify the default logical port
before calling the web service (leave it empty).

• When a logical port is set, the system reads endpoint information from a logical port configuration
that you defined in SOAMANAGER.

• When no logical port is set, the business system agreement configuration is looked up in your PI
system.

A default logical port is set using configuration ID SOA_LP in /NICELAB/IF_CTRL transaction:

 47

Support for Cloud Platform Integration (CPI)

To configure SAP CPI to accept messages from the ABAP Package and communicate them with the
endpoint in Loftware Automation, complete steps in the following chapters.

Prerequisites (not covered in this document):

• SAP user that will execute calls from ABAP Package to CPI already created.

• SAP Integration Suite subscription already set up and configured. You must have the “Design,
Develop and Operate Integration Scenarios” capability available (the “Message Queues” option is not
required). You must have a user login with appropriate Role Collections for editing the Integration
Suite (such as PI_Integration_Developer or PI_Administrator)

Configuring SAP Integration Suite
1. Log on to your SAP BTP Cockpit.

2. Click the subaccount, where you would like to configure printing through Loftware.

3. Make sure your user is a member of the appropriate Role Collection (such as
PI_Integration_Developer and/or PI_Administrator) to be able to add the integration.

4. In the left-hand pane, expand the Services node and select Instances and Subscriptions.

5. Click the Integration Suite.

6. Select Design, Develop and Operate Integration Scenarios.

7. In the left-hand pane, click the Pencil icon.

8. Click the Import button.

9. Browse for the NiceLabel Package_1.0.0.zip file provided in the ABAP Package bundle and select it.
See the folder \Integrations\CPI Configuration.

 48

10. Select the NiceLabel Package you just imported.

11. Go to the Artifacts tab.

12. In the Groovy Script Collection line, click the Actions button and select Deploy.

13. In the NiceLabel Integration Flow line, click the Actions button and select Deploy.

14. Wait until the artifacts are deployed. This might take several minutes.

NOTE: You can track the deployment status in Eye icon>Manage Integration Content>All.

15. In the left-hand pane, click the Eye icon.

16. In Manage Integration Content, click on All tile.

17. Select NiceLabel Integration Flow and click the Endpoints tab.
Here is where you can see the endpoint URL that you have to consume from the ABAP Package.
Here is also where you can download the WSDL.

18. Click the download icon next to WSDL without policies to download the WSDL. You will need it later

in tcode SOAMANAGER to configure the Logical Port.

NOTE: A copy of the WSDL file is also included in the ABAP Package bundle. See the folder
\Integrations\CPI Configuration.

 49

Configuring access permissions
1. Log on to your SAP BTP Cockpit.

2. Click the subaccount, where you would like to configure printing through Loftware.

3. To configure access permissions, do the following:

4. In the left-hand pane, expand the Security node and select Role Collection.

5. Click the + button to create a new Role Collection.

6. For Name, type “NiceLabel_MessageSend”.

7. For Description, type “Allows users to send messages into CPI”.

8. Click the new role you’ve just created.

9. Click the Edit button.

10. Click inside the edit field Role name.

11. In the Role Name, find the role MessagingSend and select it. This will filter the view in the Roles
table below.

12. Select MessagingSend in the Roles table. Make sure the proper Application Identifier is selected.

13. Click Add.

14. In the Users section, add the ID of the user that you will use for authentication. This is the user that
you will have to configure in SOAMANAGER in the properties of the Logical Port.

15. Click Save.

Configuring logical port

To configure the logical port, do the following:

 50

1. In SAP GUI, run the transaction SOAMANAGER.

The SOA Management opens in the browser.
2. In the Service Administration tab, click Web Service Configuration.

3. In the Search criteria drop-down box, select Consumer Proxy.
4. In Search Pattern, enter the name of the consumer proxy as provided by the ABAP Package. Enter

/NICELAB/CO_NICELABEL_OUT and press Enter.

5. Click the /NICELAB/CO_NICELABEL_OUT entry in the search results.

 51

6. In the Configurations tab, click Create.
In the drop-down, select WSDL Based Configuration.

7. In the Logical Port Name step, enter the name that identifies this logical port.
8. In the Description field, enter the text that describes the logical port.
9. Click Next.
10. In the WSDL Information step, select Via File and click Browse. Then browse for the WSDL file you

downloaded from the BTP cockpit. You can also use the WSDL file provided in the ABAP Package

 52

bundle (see folder \Integrations\CPI Configuration).

11. Click Next.
12. In the Binding Selection step, click Next.
13. In the Consumer Security step, type in the user name and password in the respective fields. This is

the user you configured in the SAP BTP Cockpit for the role collection NiceLabel_MessageSend in
the previous steps.

14. Click Next.
15. In the HTTP Settings step, make sure the URL Access Path is set to /cxf/NiceLabelService.
16. Make sure the Computer Name of Access URL is set to the endpoint from your SAP Integration

Suite. Do not include the leading “https://” text.
a. If you have used the WSDL downloaded from your SAP Integration Suite, the endpoint should

already be correct.
b. If you have used the WSDL provided with the ABAP Package bundle, you will have to change

the URL to use endpoint address from your SAP Integration Suite.
17. Click Next.
18. In the SOAP Protocol step, click Next.
19. In the Identifiable Business Context step, click Next.
20. In the Operation Settings step, click Next.
21. Click Finish.

Configuring Cloud Trigger access
You must enable the access to the Cloud Trigger. You must obtain the subscription key that allows you to
consume the Cloud Trigger API.

For more information, see the chapter:

• Generating a subscription key to consume Loftware Cloud APIs

 53

Using ABAP Package features

Configuring the demo transaction

The ABAP Package includes a demo transaction developed in ABAP that demonstrates the practical use of
the API. The demo transaction provides a user interface for testing the underlying API. The demo transaction
collects the provided data and sends it to ABAP Package. ABAP Package encapsulates data in XML
message and sends it to Loftware Automation for processing.

Before you can run the demo transaction, you must configure it. The demo transaction reads the
communication method (SOA or RFC) and the destination name (logical port or HTTP destination) from the
configuration table.

You must configure the following:

1. Run tcode /n/NICELAB/IF_CTRL to open the configuration table.

2. If you intend to use Web Service (SOA) connection to Loftware Automation, do the following:

a. Add Config ID OPERATION_MODE.

For value, type SOA.

b. Add Config ID SOA_LP.

For value, type the name of the logical port you defined for Web Service connection in tcode
SOAMANAGER.

3. If you intend to use RFC (HTTP REST) connection to Loftware Automation, do the following:

a. Add Config ID OPERATION_MODE.

For value, type HTTP.

b. Add Config ID HTTP_RFC.

For value, type the name of the HTTP destination you defined in tcode SM59.

4. Save changes.

For details see Configuring system-wide defaults chapter on page 30.

Using the demo transaction

The demo transaction receives and displays feedback from Loftware Automation. Possible feedback is the
success of the printing process, printer live status, label preview, list of available labels in the DMS, list of
available printers, list of variables from the selected label, binary print job, etc.

The responses for label catalog or printer names calls are cached. To force a call for label catalog or printer
names, use the appropriate button in the demo transaction (Get Printer, Get Label Catalog).

NOTE: The prerequisite for running the demo transaction is an already deployed configuration in Loftware Automation
Manager.

To run the demo transaction, do the following:

 54

1. In SAP GUI, run the transaction /n/NICELAB/IF_DEMO.
The Testing connectivity to Loftware integration service transaction appears.

2. Enable Display Request if you want to display the generated XML payload on the screen instead of
sending it to Loftware Automation. You would use this option to analyze the data in the composed
XML message.

3. Enable Display Response to display the status feedback from Loftware Automation. If any errors
occur during processing, Loftware Automation returns a detailed error message, and the demo
program displays it on-screen. Make sure this option is always enabled.

4. Enable Write Spool to log all messages to/from Loftware Automation in SAP Spooler (tcode SP01).
Each request to Loftware Automation and all responses from Loftware Automation are logged in
SAP Spooler.

5. In API Operation mode, select the transport method you want to use for communication with
Loftware Automation.

a. SOA. Select this option if you want to send the data into Web Service trigger in Loftware

Automation. Click Browse and select the logical port you have defined earlier in the topic
Configuring SOA (Web Service) destination on page 21.

This operation mode is also used when sending print requests through SAP PI/PO or SAP
CPI infrastructures.

b. HTTP. Select this option if you want to send the data to the HTTP trigger in Loftware

Automation. Click Browse and select the RFC Destination you have defined earlier in
topic Configuring HTTP (RFC) destination on page 25.

6. In the Request Header section, the following parameters are configurable.
a. Print. Enable this option to print labels.
b. Preview. Enable this option to generate and display label previews in SAP GUI.
c. Print job. Enable this option to generate and save print jobs in SAP Spooler. Make sure you

enable the Write to spool option. Print jobs contain the printing instructions for the selected
printer models. These instructions are printer commands for the target printer (Zebra
Programming Language “ZPL” for Zebra printers, SATO Programming Language “SPL” for

 55

SATO printers, etc.) You can send print jobs from SAP Spooler to the printer (passthrough
mode).

NOTE: It is best to use Loftware printer drivers to create print jobs.

d. Printer Status. Enable this option to display information about the live printer status.

You can combine the flags Print, Preview, and Printer Status within the same request. Loftware
Automation executes all received methods.

e. Label Name. Specifies the file name of the label template to print. Make sure the label name

contains the extension (.NLBL) as well. You can click the Search Help button next to the
FORMAT edit field to display the label catalog (list of all labels in your DMS). Click the Get
Label Catalog button to retrieve the list of labels first.

NOTE: For Loftware Cloud products, the label catalog is created synchronously. For on-premise
NiceLabel LMS, the label catalog is created asynchronously in the background. It might take a while to
become available (several minutes). This depends on the number of labels. Until the label catalog is
ready, you receive an empty list.

For a quick test, you can use the included sample label file, label.nlbl. If copied the label
template in the same folder with your Automation configuration (.MISX file), you can
reference the label by its filename. If you have copied the label template to some other
folder, include a full path to the file.

For more information about using the file names, see chapter Providing a label name on
page 67.

f. Response format. Specifies the format of the label preview. You can choose between PDF,
PNG, and JPEG.

g. Quantity. Specifies the number of label copies to print.
h. Printer Name. Specifies the name of Windows printer driver on the server, on which

Loftware Automation runs. You can click the Search Help button next to the
PRINTER_NAME field to display the list of printers. The request for the printer list goes to
Automation.

NOTE: This is not the SAP printer name. This is the Windows name of the printer driver installed on a
computer with Loftware Automation.

i. Job Name. Specifies the name of the print job as displayed in the Windows Spooler. This is
an optional parameter. By default, the job name is the same as the label name. Use this
option to rename the print job.

j. User. Specifies the user name that requests the printing. This is an optional parameter and
is currently not in use in the Automation configuration. You might use it to provide the
information to the label.

k. System. Specifies the SAP system information. This is an optional parameter and is
currently not in use in the Automation configuration. You might use it to provide the
information to the label.

l. Tray. Specified the printer’s paper tray name from where the media must be taken. Make
sure to use the tray name as provided in the printer driver.

m. Printer settings. The printer settings define the printer configuration for the specific media,
including settings like speed, darkness, sensor type, etc. Loftware gets the printer settings
stored in the label template, recalls them from the printer driver, but this option allows you to
apply your own printer settings.

n. Label settings. The label settings define the layout of the label template, including label
dimensions, orientation, number of labels on the page, margins to the media edge, offsets

 56

between labels etc. These settings are usually defined by the label designer in a NLBL file.
However, you can override the settings at print time. This allows you to maintain less label
templates and reuse the same label template for different printer and media types. For
example, you can define a label template to print on a roll of labels, but for another print
scenario you can print the same label on an A4/Letter page of labels multiple time and in
different rotation.

7. The table at the bottom of the transaction displays the list of variables defined in the selected label.
Each time you select a new label, the values for the variables are taken from the label. You can
accept the suggested default values for variables or enter your own. You can also add your variables
(rows). Loftware Automation does not impose any limitation on the number of name-value pairs you
want to use.

8. When ready, click Send Request (or press F8).

Requesting a list of printers

To request a list of printers available for label printing, ABAP Package must set the <PRINTERS /> XML
element to True. The returned list contains printer names that Loftware Automation can use for label
printing. These can be local printers with drivers installed on Automation’s computer, or cloud-connected
printers.

When you request a list of printers, the ABAP Package stores it in the table /NICELAB/IF_PRNT. The table
contains the combination of printer name and identifier of the Automation server, so ABAP Package knows
which printers are available from each Automation server. The “identifier” is a combination of two fields: (1)
a type of the Automation endpoint (e.g., “Web Service”, “HTTP Request”) and name of the endpoint (e.g.,
name of the Logical Port or RFC destination). Each printer in the list is also identified as the local printer
(installed on the same computer with Automation) or the cloud-connected printer.

The printer name is encoded in the <PRINTERNAME /> element inside the XML header. When you select a
particular printer, ABAP Package lets Loftware Automation know if it is a local or cloud printer, so Loftware
Automation will process the request correctly. For cloud printers, the additional flag <CLOUD_PRINT /> in the
header is set to True.

Two types of printers can be requested:

• Only local printers. The list of printers is acquired from the computer that runs Loftware Automation.
Loftware Automation returns the list of visible printers. Printer accessibility is determined by the user
permissions of the Windows user account that you use to run the Automation Service process.

In this case, the <Header> element must include:

o <PRINTERS /> element set to True.

• Local and Cloud printers. With your Loftware Cloud subscription, you also get access to using cloud-
connected printers. In this case, the printer is registered with the Loftware Cloud and accepts print
jobs directly from the Loftware Cloud (not from Automation). You do not have to install the printer
drivers for cloud-connected printers.

NOTE: This functionality requires Loftware Cloud Business or above.

The <Header> element must include:

o <PRINTERS /> element set to True.

 57

o You must configure the OCP-APIM-SUBSCRIPTION-KEY and API-VERSION keys in the
/NICELAB/IF_CTRL configuration table. For details see Configuring system-wide defaults
chapter on page 30.
These two configurable items will be encoded as <CLOUD_APIKEY /> and
<CLOUD_APIVERSION /> elements in the <Header /> element.

For XML structure of the response, see chapter Structure of <PrinterList /> on page 97.

NOTE: A response will contain a list of all local printers that are installed on a computer with Automation. However, all
these printers might not be accessible by Automation, dependent on how you configured printer access in Control
Center.

Printing a label or report

To print a label or report to local printers, the <Header /> element must contain the following:

• <PRINT /> element set to True.
• <FORMAT /> element to set the label or report template created with Loftware Designer.
• <PRINTERNAME /> element to set the printer. This is an optional element. When not provided, the

label prints to the printer that is saved with the label template.
• <QUANTITY /> element to provide the number of labels to print.
• <QUANTITY_LABELCOPIES /> element to provide the number of copies to print per each label. This

is an optional element. When not provided, each label prints in one copy.
• Optionally. <TRAY /> element to provide name of the paper tray (paper bin) which contains the label

media for printing.

The label and printer determination must be done within SAP. Automation requires the exact label template
name as available from the Document Management System and exact Windows printer name as available
on the computer, where Automation is installed, or exact cloud printer name. If required, the label and printer
determination can be performed in Loftware Automation as well but is subject to additional configuration.

Automation automatically identifies whether the data in XML is provided for label or report printing. You
must make sure to provide the appropriate label or report template in the <FORMAT /> element. Names of
SAP data sources must match the names of data sources defined in a label or report template to ensure
proper value mapping. For example, when you have a field MATNR in an SAP transaction, the label template
must contain a variable of the same name.

You can use Automation to generate data model files to help you create data sources in the label or report
templates. For details, see Generating a field catalog chapter on page 69.

For XML structure of the response, see chapter Structure of <PrinterList /> on page 97.

NOTE: You must insert at least one <Data> element in your XML payload, even if you provide no key-value pairs to the
label. In case of empty element, use the syntax <Data></Data> (not the shorten variant <Data />).

Printing labels to cloud printers
NOTE: This functionality requires Loftware Cloud Business or above.

ABAP Package can print labels to cloud-connected printers. These are printers that reside on-premise, but
have internet connectivity and are registered with your Loftware Cloud subscription. When you switch them
on, they establish a connection with Loftware Cloud and keep it open. Loftware Cloud API can deliver print

 58

jobs (e.g., ZPL content for Zebra printers) directly to a printer. You do not need any on-prem printer driver
installed.

Loftware Automation is pre-configured to receive the information for your cloud printers from ABAP Package
and can send label print request to the Loftware Cloud API, which in turn prints the label.

To print labels to a cloud printer, you have to do the following:

• You must configure the OCP-APIM-SUBSCRIPTION-KEY and API-VERSION keys in the
/NICELAB/IF_CTRL configuration table. For details see Configuring system-wide defaults chapter
on page 30.

• Request a list of available printers from Automation. Because of step (1) above, the Automation will
combine available local and cloud printers in the response. ABAP Package saves the received printer
list in a table /NICELAB/IF_PRNT. Each printer includes a Boolean field identifying it as a local or
cloud printer.

• To print a label to a cloud printer, use the cloud printer name in the <PRINTERNAME> element when
issuing a print request. When you select cloud printer, ABAP Package will include the field
<CLOUD_PRINT> with value True in the <Header /> element, which notifies Automation to use Cloud
Print API. You also have to set the main printing flag <PRINT> to True.

• Optional. You can specify the label template version with <CLOUD_LABELVERSION /> element. If
omitted, the last published version is used.

Previewing a label or report

To preview a label or report, the <Header /> element must contain the following:

• <PREVIEW /> element set to True.
• <PREVIEW_FORMAT /> set to “PDF”, “PNG” or “JPG”.

This element is optional. Without explicitly defining a return value, you will get a preview formatted
as PDF.

The preview is returned as base64-encoded data in the XML response.
PDF can be a multi-page document, while bitmap preview returns just the first page in a batch.

For XML structure of the response, see chapter Structure of <PrinterList /> on page 97.

NOTE: You must insert at least one <Data> element in your XML payload, even if you provide no key-value pairs to the
label. In case of empty element, you must use the syntax <Data></Data> (not the shorten variant <Data />).

Emailing label preview
To email label preview as attachment to the list of recipients, the <Header /> element must contain the
following:

• <EMAIL_RECIPIENTS> element with the comma-separated list of email recipients

The generated label preview will be sent to all recipients in the list.

Before you the emails can be sent, you must configure the email-related properties in the Automation
configuration for your selected trigger type.

 59

Do the following:

1. Open Automation configuration (MISX file) for editing in the Loftware Automation Builder.

2. Open properties of the trigger type you intend to use from SAP. This is dependent on your preferred
communication type from SAP to Loftware (e. g. RFC or Web Service call).

3. Go to Variables tab.

4. Define default value for the variable _EMAIL_FROM. This should be the sender of the emails from
your server. For example noreply@yourdomain.com.

5. Define default value for the variable _EMAIL_SMTPSERVER. This should be the IP address or FQDN
(fully qualified domain name) of your SMTP server. Automation will send emails through this server.

a. OPTIONALLY. Set default value for the variables _EMAIL_SMTPSERVER_USERNAME and
_EMAIL_SMTPSERVER_PASSWORD if your SMTP server demands authentication.

6. OPTIONALLY. Set default value for the variable _EMAIL_SUBJECT. This contains the value for
Subject in the email.

7. OPTIONALLY. Set default value for the variable _EMAIL_MESSAGE. This contains the value for body
in the email. It must have the HTML formatting.

8. Save the Automation configuration.

9. Deploy the new Automation configuration.

NOTE: The email is sent only when the EMAIL_RECIPIENTS element is not empty.

Adjusting label settings at print-time

The label settings are width and height, number of labels in horizontal or vertical dimension, gaps between
labels, margins from the media edge, orientation, rotation and similar. You define these settings while you
design your label template in Loftware Designer and they become part of the template’s definition.

Loftware Automation allows for dynamic label template changes at print time. You can modify some of the
label settings at print-time – they are applied to the print job, but not saved in the label template. This helps
to minimize the number of label templates you must maintain. For example, you can create a label template
designed for label printers in dimensions 105×148 mm (which is roughly 4×6”) and print the same label
template on different printers with different orientation and number of templates in vertical and horizontal
dimension.

Printing on a label printer (such
as Zebra).

Printing same label template
with overridden label settings to
print it on the laser printer using
A5 page size. Two label
templates fit on the A5 page.

Printing same label template with
overridden label settings to print it
on the laser printer using A4 page
size. Four label templates fit on
the A4 page.

mailto:noreply@yourdomain.com

 60

To adjust the label settings at the print time, you must provide the label-settings modifier XML payload in the
Header element LABELSETTINGS. The accepted value is the XML payload described for the Label setting
parameter in the Automation’s action Set Print Parameter.

To test this functionality in the demo transaction, click the button Label Settings.

For the details, see Loftware online help.

https://help.loftware.com/cloud/en/Content/Automation/UUID-b69d5885-4a40-dd10-e358-5d8db04b3725.html

 61

Checking printer live status

To check the status of the specified printer, the <Header /> element must contain the following:

• <PRINTERSTATUS /> element set to True.

Furthermore, when you select the status of a cloud-connected printer, ABAP Package includes these
additional fields in the <Header /> element:

• <CLOUD_PRINT /> with value True.

• <CLOUD_APIKEY> with the value of OCP-APIM-SUBSCRIPTION-KEY configurable item from
/NICELAB/IF_CTRL table.

• <CLOUD_APIVERSION> with the value of API-VERSION configurable item from /NICELAB/IF_CTRL
table.

Automation will check the printer status and return it in a synchronous response.

For details of exchanged data structures, see Data exchange on page 91.

Overrides

Overriding print settings (label template, printer name, quantity)
A print request from ABAP Package to Loftware Automation usually contains data for one label or report.
The XML payload contains one <Header /> element that provides label or report template name, printer
name, and quantity of labels. The <Data /> segment contains data to print on a label or report.

You can provide several <Data /> elements, each providing data for a new label or report, but using the same
label template and printer name as provided in the <Header /> element.

You can override the print settings for each <Data /> element if you want to print data using a different label
template on a different printer, but all within one request from ABAP Package to Loftware Automation.
You must provide the data for label template name, printer name, or quantity inside each <Data /> element
like this:

• For label template name use variable _FORMAT

• For printer name use variable _PRINTERNAME

• For quantity use variable _QUANTITY

NOTE: When you decide to use data override in <Data /> elements, you must use the override in all <Data /> elements.

<?xml version="1.0"?>
<LABELS>
 <Header>
 <FORMAT>label.nlbl</FORMAT>
 <QUANTITY>1</QUANTITY>
 <PRINTERNAME>ZEBRA R-402</PRINTERNAME>
 <PRINT>True</PRINT>
 </Header>
 <Data>
 <Item Id="_FORMAT">label1.nlbl</Item>

 62

 <Item Id="FIELD1">Loftware</Item>
 <Item Id="FIELD2">DEMO</Item>
 <Item Id="FIELD3">12345</Item>
 <Item Id="FIELD4">www.loftware.com</Item>
 <Item Id="FIELD5">123456789012</Item>
 </Data>
 <Data>
 <Item Id="_FORMAT">label2.nlbl</Item>
 <Item Id="FIELD1">Loftware</Item>
 <Item Id="FIELD2">DEMO</Item>
 <Item Id="FIELD3">12345</Item>
 <Item Id="FIELD4">www.loftware.com</Item>
 <Item Id="FIELD5">123456789012</Item>
 </Data>
</LABELS>

In the example above, the XML payload provides two <Data /> segments. Data from the first segment will
print on label template label1.nlbl. Data from the second segment will print on label template
label2.nlbl.

You can use similar overrides for all fields available within the <Header /> element by prefixing underscore to
the field name, e.g., FORMAT -> _FORMAT.

Overriding printer settings
To override the printer settings, the <Header /> element must contain the following:

• <PRINTERSETTINGS /> element containing base64-encoded DEVMODE for the printer specified in
<PRINTERNAME /> element.

The “printer settings” are settings in the printer driver that define details for the printout, such as to use
thermal printing mode or direct printing mode, details for the printer sensors, offsets, and similar.

When designing a label template in Loftware software, you can store printer settings in various places (e.g.,
hardcode it in the label templates itself, recall it from the printer driver, rely on the settings as configured in
the printer, etc.)

When you do not specify <PRINTERSETTINGS /> value, Loftware Automation will use the printer setting as
configured with the label template / selected printer. When you include <PRINTERSETTINGS /> the current
printer settings will be overridden with provided settings. This is a useful option to fine-tune printout for
cloud-connected printers, where there are no printer drivers to configure, but also works for local printers.

The DEVMODE is the entire printer driver structure. To extract the settings and base64-encode them, you can
use Loftware Designer to create such an application. You would use the built-in action Set Print Parameter.

Overriding email settings
The list of email recipients to receive the label preview is configured with an element EMAIL_RECIPIENTS in
the Header element in the XML payload. You can provide a different list of recipients with each call to the
ABAP Package.

The other email-related settings, such as the email server properties, email subject, email message and
subject field, are hardcoded in the Automation configuration. When needed, you can override these fields

https://help.nicelabel.com/hc/en-001/articles/4402145590545-Define-Actions#printer-1-7

 63

with each call to the ABAP Package as well. There is no definition for them available in the Header structure,
but you can provide them in each Data element as you do with the rest of key-value pairs that you want to
print in the label.

You must provide the data for email settings inside each <Data /> element like this:

• For the SMTP server use variable _EMAIL_SMTPSERVER

• For the email server SMTP credentials use the variables _EMAIL_SMTPSERVER_USERNAME and
_EMAIL_SMTPSERVER_PASSWORD

• For the from field (email of the sender) use the variable _EMAIL_FROM

• For the subject field use the variable _EMAIL_SUBJECT

• For the email message use the variable _EMAIL_MESSAGE

Logging data to SAP Spooler (SP01)

You can configure the ABAP Package to save all events in SAP Spooler (tcode SP01).

This functionality allows for complete tracking of Loftware execution inside the SAP system. Each outbound
request sent to Loftware Automation and each inbound response coming from Loftware Automation are
stored as items with a unique Spool number.

The function that updates the event data in SP01 is available as /NICELAB/IF_RW_SPOOLJOB_PARAMS and
is developed from the SAP standard function RSPO_RW_SPOOLJOB_PARAMS.

In the example below, there is a log of two requests sent to Loftware Automation. The first one at 13:05 and
the second at 13:19. You can see all data that was sent out. The item with Spool id 532065 contains the
outbound message, displayed as parsed XML at the beginning and the raw data below.

Figure 2: Each method executed in Loftware Automation is logged with a unique Spool id

 64

Figure 3: Details for the outbound message to Loftware Automation

Each log also contains the endpoint type and name for you to see to which destination (Loftware Automation
server) the request has been sent. For example, endpoint type HTTP Request and endpoint name EMEA
identify the request as RFC call to RFC destination configured as “EMEA” (in tcode SM59).

This request executed three methods in Loftware Automation:

1. To print a label (532065). Three was no error reported from Loftware Automation. Printing
completed successfully.

2. To receive a label preview as PDF (532066). The label preview is stored as a PDF document. The
preview is available to meet the regulatory requirements, or you can use it as proof of printing.

3. To receive a binary print job (532067). Loftware Automation has returned a print job. The print job
contains the label with merged SAP data. The data has been converted into the programming
language of the selected printer. You can send this data to the printer defined in SAP and the label
will print. You would use this function if you do not want Loftware Automation to send data to your
printer directly, and if you want to have printing control inside SAP.

The second request (from 13:19) failed. The outbound request was sent to Loftware Automation, but there
was an error while processing the data. Details in Loftware Response (Spool id 532070) reveal that the label
name was not found in your DMS. Whenever there is a data processing issue in Loftware Automation, the
details about the error return to SAP in a synchronous response.

 65

You can execute more than just one method using a single request to Loftware Automation. For example,
you can execute label print and label preview methods using a single message sent to Loftware Automation.
“Label print” response logs under a unique Spool id. “Label preview” response also logs logged under a
unique Spool id. To keep the things organized and to ensure optimal user experience, all Spool items from
the same response are grouped into a composite document. This is a new Spool id that contains the
individual Spool ids. The composite document appears only when your request enables two or more
methods.

NOTE: You cannot combine the PRINT_JOB request with any other request. It must be used in the unique request.

In this example, the Spool id 532068 is a composite document containing all subitems that were returned in
the response from Loftware Automation.

Figure 4: All subitems from a single request to Loftware Automation are grouped together

To enable writing events to SAP Spooler, do any of the following:

• In demo transaction, enable the option Write Spool

• To enable this option as a default, add Config ID WRITE_SPOOL to the configuration table and set its
value to True. For more information, see chapter Configuring system-wide defaults on page 30.

• Enable or disable the writing to Spool option with each request to the ABAP Package.

The items in SAP Spooler are associated with the specific output device:

• If you request PRINT_JOB, the items are associated with the NiceLabel Raw Printer (NLBN) output
device. You can override this default output device with your own when making a call to the ABAP
Package.

• In all other cases, the items are associated with the NiceLabel Request to Spool (NLRS) output
device.

Defining your own Output Device for print jobs in SAP Spooler
Every print job in SAP Spooler is associated with some output device. When you use ABAP Package to write
print job in the SAP Spooler, the built-in output device NiceLabel Raw Printer is used for the associated
output device. When you want to send print job to the real output device, you must change the output device
at print time.

 66

If you know the name of your output device in advance, you can command the ABAP Package to associate
item in the SAP Spooler with that output device, so you don’t have to modify it at print time. The output
device must already exist in your SAP system.

For an example usage, see the provided demo transaction. When you select the option Print Job, you can
select one of the already configured Output Devices. Make sure, you also enable the Write Spool check box
in the Options panel to write data to SAP Spooler.

See source code the demo transaction to understand how to programmable execute a call to ABAP Package
and provide the output device name.

Printing binary print jobs from SAP

When the ABAP Package sends value True in the <PRINT_JOB /> XML element, Loftware Automation returns
the binary print job. ABAP Package then saves the print job inside SAP Spooler. By default, the job is
associated with the NiceLabel Raw Printer (NLBL) output device (which is provided with the ABAP Package).

NOTE: You can override the NiceLabel Raw Printer output device and use your own output device. See the chapter
Defining your own Output Device for print jobs in SAP Spooler on page 65.

To send the binary print job to the printer:

1. Run tcode SP01.

2. Find the print event you have executed through the ABAP Package.

3. Click the icon representing the binary data.

The spool request displays as a graphical preview. As the request contains binary characters, they
do not display properly on-screen.

 67

4. Click the Print with changed parameters… button.

5. Change the output device from NiceLabel Raw Printer to your label printer.

Prerequisites:

1. You must have the output device already created in tcode SPAD.

2. The selected output device must be compatible with the print job format you requested from
Loftware Automation. The printer model associated with the SAP output device must understand the
printer programming language provided in the binary print job from Loftware Automation.

Providing a label name

When providing a label name, use any of the following syntaxes:

• Label name without the path. Loftware Automation looks for the label file in the same folder, where
the configuration file (.MISX) is located and folders ..\Labels and .\Labels.

label.nlbl

• Label name with the relative path. The root folder is the folder with the Automation configuration file
(.MISX).

..\DistributionLabels\Gen1\label.nlbl

• A full path to the label in DMS, including the server name. This syntax works for on-premise and
Loftware Cloud products.

https://myaccount.onnicelabel.com:8080/DistributionLabels/Gen1/label.nlbl

• A full path to the label in your DMS w/o the server name. This syntax works for on-premise and
Loftware Cloud products. The name must begin with the slash character (/), and the path must be
provided from the Control Center’s Documents root folder.

https://myaccount.onnicelabel.com:8080/DistributionLabels/Gen1/label.nlbl

 68

/DistributionLabels/Gen1/label.nlbl

Creating a label catalog

To request a label catalog, ABAP Package must set the <CATALOG /> XML element to True.

Optionally, you can specify a starting folder for your label templates in the <CATALOG_ROOT /> XML
element. When no value is provided, Automation will create the catalog from the root folder in the DMS.

The demo transaction caches the received label catalog in the internal table.

The process to generate the label catalog in Automation is different depending on the Loftware product you
have.

For the response XML structure, see chapter Structure of <LabelCatalog /> on page 99.

Requesting label catalog for Loftware Cloud
Automation uses native Document API to create a label catalog when you use Loftware Cloud products. This
approach provides the fastest possible method to generate the catalog. ABAP Package retrieves a label
catalog in a response to a synchronous call (ABAP Package waits for Automation to generate the label
catalog on the fly).

Automation must receive a subscription key from the ABAP Package to successfully consume the Document
API. The subscription key is the authentication method to access the Document API. The demo transaction
will read the subscription key from the configuration table and include it inside the Header element of the
XML payload.

NOTE: The user account that you used to activate Loftware Automation must belong in the access role with the
permissions to read folders and label templates to generate the label catalog.

You must do the following:

1. Generate the subscription key for your Loftware Cloud account.

2. Add items to the ABAP Package’s configuration table /NICELAB/IF_CTRL.

For more information, see the chapter Generating a subscription key to consume Loftware Cloud APIs in
this document.

Requesting label catalog for NiceLabel LMS
There is no Document API available for NiceLabel LMS products. Automation generates the label catalog
with a help of a command-line utility. ABAP Package retrieves the current version of a label catalog, while
Automation starts generating a new label catalog in a background thread (asynchronously). The generation
of the label catalog can take several minutes, dependent on the number of label templates you have.

When label catalog creation is in progress, a signal file LabelCatalogUpdateInProgress.txt is created in the
same folder with the Automation configuration. This file prevents simultaneous generation of label catalog
in an environment with multiple Automation servers. After the label catalog is generated, the signal file is
deleted.

 69

NiceLabel Automation saves the label catalog as an XML file LabelCatalog.xml in the same folder with the
Automation configuration file.

The user account that you run your NiceLabel Automation service with must belong in the access role with
the permissions to read folders and label templates to generate the label catalog.

Requirements:

• The user that runs Automation Service must have the permission to write to the DMS folder where
Automation configuration is saved so that the signal file and label catalog file can be created in the
same folder.

• Do not check in a file LabelCatalog.xml , or NiceLabel Automation will not be able to update it.

You can change the location for the signal file (by default, Automation saves it in the same folder, where you
have stored the configuration file – MISX file):

1. Start NiceLabel Automation Builder.

2. Open the Automaton configuration (MISX file).

3. Edit the trigger Label Catalog Async Updater.

4. Select Variables tab.

5. Select signalFile variable.

6. Update the Default value to include the new path.

Requesting a list of variables from the label

To request a list of variables that are defined in the label, ABAP Package must set the <VARIABLES /> XML
element to True and provide the label name in the <FORMAT /> XML element.

Loftware Automation reads the label variables and returns a list of variables with their properties. The list
contains the “prompted” variables. These are the variables for which you provide values at print time. For
example, “constants” or “database data sources” are not included in the list.

For the XML structure of the response, see chapter Structure of <LabelVariables /> on page 98.

Generating a field catalog

The XML payload generated in the ABAP Package contains name-value pairs for the data points in the
originating SAP transaction. These field names must have a matching counterpart in the label template. For
each field name that you want to print in the label template, you must define a variable in the label template
of the same name. Loftware Automation will then automatically map field values from XML payload to the
label variable of the same name.

Loftware Automation exposes functionality to generate a field catalog for you. All name-value pairs provided
in the XML payload are converted in the data file that a designer can import into the label template.

Loftware Automation can convert the name-value pairs from the XML payload into the following data
structures to save time manually defining variables in the label template:

 70

1. Loftware “variable definition file” (file extension .NLVR). When you import .NLVR file in the label
template, all variables will be created automatically using the field names from the XML. The current
values of fields from XML are used as “provisional values” – these are values that Loftware Designer
will use during label design but are not default values for printing. You can import variables on the
label template in Dynamic Data Manager.

2. Loftware “values file” (file extension. VALUES). You can browse for this file in the Print form when

testing your label in Loftware Designer. Values from this file are temporarily applied to label
variables so you can test their effect on the label template.

3. CSV file (file extension .CSV). This file is generated from a report section of the XML payload when
such a section is found in XML. The report section provides repeatable data for shipping documents,
like delivery notes, packing slips, invoices, and similar. The Report object requires a connection to a
database source while you design it. You can use generated CSV as a database source.

To request a variable definition file, ABAP Package must set the <DATAMODEL /> XML element to True.

 71

All data files are stored in the same folder, where the Loftware Automation configuration file is stored.

You can change the location of the data files.

Permanently

1. Start Loftware Automation Builder.

2. Open the Automaton configuration (MISX file).

3. Edit the trigger you use: “HTTP (RFC”, “Web Service (SOA)”, or “Cloud Trigger”.

4. Go to the Variables tab.

5. Edit variable _PATH_DATAFILES.

6. For its default value enter the folder name, where you want to save the data files:

a. c:\folder – the data files are saved in a folder “\folder” on a local drive C (on a computer
where Automation is installed)

b. /folder – the data files are saved in a folder “/folder” in the Document Management System
to which Automation is assigned. You can also prepend the server name but is not
necessary as Automation will add it on its own (e.g., https://server:8080/folder)

7. Save the configuration.

Dynamically with each request

1. Include the variable _PATH_DATAFILES inside the <Data> segment in the XML structure.

2. For its value send the folder name, where you want to save the data files:

a. c:\folder – the data files are saved in a folder “\folder” on a local drive C (on a computer
where Automation is installed)

b. /folder – the data files are saved in a folder “/folder” in the Document Management System
to which Automation is assigned. You can also prepend the server name but is not
necessary as Automation will add it on its own (e.g., https://server:8080/folder)

Support for label variants

ABAP Package can use Loftware variant technology to prepare label variants for each label that is needed,
down to the SKU level without having to manually create hundreds or thousands of label variations.

A label variant is a label template (.NLBL file) that has the data sources hard-coded in and is locked from
editing. Loftware creates it out of the approved master label template and hard-codes the provided values
for the variables defined in the label template. Each label variant will store data for a particular SKU. You
cannot modify the label variant in Loftware Designer, the variant is not editable.

When creating label variants, you can choose to leave some of the variables unlocked. These are the data
sources, for which you do not know the values upfront, like Batch/LOT numbers, production dates, or best-
before dates.

To request the creation of label variants, ABAP Package must set the <VARIANTS /> XML element to True.
The names of variables that must remain unlocked in the generate variant file(s) are provided in
<VARIANTS_UNLOCKEDVARIABLES /> element as CSV list.

 72

You can provide values for many variants in the same request to ABAP Package. Each <Data /> segment
provides data for one variant.

Each label variant is saved under its unique filename.
You can provide the variant file name with the value for key _VARIANT_FILENAME. You can use the same
naming syntax as for the label names (in <FORMAT /> element inside Header). For more information, see
chapter Providing a label name on page 67.

...
 <VARIANTS>True</VARIANTS>
 <VARIANTS_UNLOCKEDVARIABLES>Batch</VARIANTS_UNLOCKEDVARIABLES>
 </Header>
 <Data>
 <Item Id="_VARIANT_FILENAME" Position="000000" Type="">/Production-
AS123/LabelVariants/3847638-234.nlbl</Item>
...

If required, the variant file name can also be auto-generated out of the other key-value pairs provided in the
<Data/> segment for each variant. In this case, you can modify the Automation configuration to add logic to
generating the variant file name. Add your actions inside the placeholder already reserved for such a case.
Open the Automation configuration and see the action 3.5.1.4.1.1.2.5.2 Custom variant name (placeholder).

Exporting data
You can use the method EXPORT_DATA to run custom actions in Automation to save the data from SAP to
some intermediate database or other resources. Many SAP integration projects use the ABAP Package not
for label printing but for exporting the data out of SAP. The actual print is initiated from the custom form
application running in Loftware GUI.

In the previous versions of the ABAP Package, you had to change the Automation configuration of the
existing PRINT method to implement saving the data instead of printing. From this version, the method for
exporting data is built into the Automation configuration.

The Automation configuration has all the groundwork prepared. It contains the placeholder that will execute
when you set the <EXPORT_DATA /> XLM element to True. The placeholder comes without any defined
actions. You are free to add your custom actions and adapt the configuration to your specific need and
environment.

Communication extendibility

Often, the customers use the ABAP Package outside its intended usage. For example, they would use it to
export the data from SAP and not use printing functionality at all. Because you can freely modify the
Automation configuration it is easy to extend it with new custom actions.

To help you with the modification even further, ABAP Package supports up to three custom XML fields in the
Header part of the XML message. You can use fields CUSTOM1, CUSTOM2, and CUSOTOM3 as Boolean
flags to run your action workflows. On the Automation side, the configuration contains the matching three
placeholders, where you would define your customs actions.

 73

For example, when you set the value of the CUSTOM1 element to True, the actions in the matching
placeholder CUSTOM1 will execute.

The XML response coming from Automation back to the ABAP Package has also been expanded with new
custom fields (these are optional). You can include your custom messages in the feedback message if you
need to provide more data back to the ABAP Package. The ABAP Package will parse these custom
messages, if they exist, and make them available in your SAP transaction.

 74

Configuring transaction to call ABAP
Package

When a specific event happens in the SAP transaction, and label printing is required, the transaction must
send the data into ABAP Package. The ABAP Package uses the enhancement spots for supported standard
SAP transactions (e.g., outbound delivery) for which label printing is necessary. For these supported
transactions, label printing executes out-of-the-box. You do not have to code anything in your SAP system.
For details, see chapter Enhancement spots.

If you want to print labels from other transactions or as a part of specific events, you must configure SAP to
communicate with the ABAP Package by yourself. Depending on the requirement and the process, you can
use one of the following approaches to send the data from the SAP application to Loftware Automation
using the ABAP Package:

• User exit in SAP standard coding.

• Business add-in (BAdI) / Enhancement.

• Create document output and change the print program.

• Custom ABAP program.

If customers integrate label printing with the SAP standard process (for example upon creating a delivery
note), the preferred integration method is to use a custom output on the delivery object. The reason for this
is that such a method also supports execution logging to some extent and is straightforward to set it up.

If there is a requirement to implement label printing in a process during which a standard output is not
possible, consider the option for using a user-exit, BAdI, or enhancement spots.

Enhancement spots

Among the SAP software advantages is the possibility to adapt the software to your requirements, and the
possibility to keep the adaptations during the upgrade. Enhancement spots allow you to add custom
functionalities to the standard SAP programs.

ABAP Package extends the functionality of standard print programs. For example, when the user issues an
outbound delivery and prints or previews the standard form, at the same time the enhancement spot in ABAP
Package activates and sends the same data into Loftware Automation for processing. SAP prints the
standard form and Loftware Automation prints the labels.

Using the enhancement spots technology, the ABAP Package provides no-coding out-of-the-box label
printing functionality to the supported standard SAP applications. The usage of enhancement spots can be
enabled or disabled in the configuration table (see chapter Enabling enhancement spots on page 35).

 75

Example for outbound deliveries (VL02n)

When using the standard output approach, the standard print program (which normally delivers data into
SAP Spooler) must change in a way to deliver data into ABAP Package. First, you must make a copy of the
standard output print program that the current/default output type uses and modify it to communicate with
ABAP Package.

When done, you must create a new output type and use the updated print program with it. To print labels, a
user selects the new output type or configures the print program to execute the output automatically upon
object (delivery in our example) creation. Programmable changes are necessary for the ABAP code.

An example of ABAP Package integration is demonstrated on the outbound delivery transaction (VL02n)
using a new document output. This transaction is used for “deliveries” – for labels containing data for
outbound delivery.

ABAP Package includes the custom print program for VL02n.

By default, the transaction VL02n uses the output type LD00. If you drill down to the processing routines
defined for this output type in the NACE transaction code, you would learn that one of the transmission
medium options is configured to use the RLE_DELNOTE / RVADDN01 print programs.

 76

Creating a new output type
To redirect data output to ABAP Package:

1. In the NACE transaction code, create a new output type. In this example, the ZNLA output type is
created.

a. Launch the transaction code NACE.

b. For Shipping (where outbound delivery fits into), select the V2 application and click Output
types.

c. Change display mode to edit mode and click New Entries.

d. In the General data tab, fill ID of Output Type, description, and access type.

e. In the Default values tab, set Dispatch time to when you want the message to be processed.

f. In the Default values tab, set message Transmission Medium to Special function.

g. In Processing Routines, you must configure the program name for each routine. For
Program, select enter /NICELAB/OUTPUT_PROCESSING. For Form Routine, select
DELIVERY_OUTPUT.

h. Save changes.

Using the new output type for processing
To use the new output type in the VL02n transaction code, do the following:

1. Run VL02n transaction code.

2. Type ID of the outbound delivery message and confirm it with <Enter>.

3. In SAP GUI, select Extras>Delivery Output>Header.

 77

4. For new output item, type ZNLA for the Output type.

5. Type the language (EN in this example).

6. In the Communication method, select LOCL for the Logical destination.
Enable Print immediately check box.

7. Save the message.

When you save the output, the custom print program maps the current delivery data (LIKP, LIPS structures)
with ABAP Package. This creates an XML message and sends it for processing to the Loftware Automation
system. Feedback about the processing is saved in the output Processing log.

Figure 5: Feedback from Loftware Automation about data processing

Label sample with predefined data sources
Sample label for outbound delivery is included in ABAP Package. The sample label contains all SAP data
sources from outbound delivery (VBDPL-*). You can import data sources from the label to any new label you
create and consequently save time.

Look for label DeliveryNote.nlbl.

 78

Example for production order (CO02)

This section describes the necessary customizing steps for setting up the basic print functionality of the
production order object list. These steps include the print program provided with ABAP Package. Order
type(s) used in the screenshots below are used for example purposes only. It is up to the customer needs to
configure printing for the correct order type, plant, or MRP group.

Configuring the system
1. In SAP GUI, run tcode OPK8 – Maintain print control of production orders.

2. Select the order type:

3. Go to the Print programs node and define a new print variant (PV). Take the existing variant as a

template and set the print variant number (in this example, the new print variant 2 is defined).

 79

4. In the new variant, set the provided print program /NICELAB/PSFC_OBJECT_LIST for list LG01.

5. Go to List control for transaction node and configure the print variant on CO01 / CO02 transaction

level.

Printing labels
NOTE: The example below assumes execution on a specific SAP server with the available sample data. In your
environment, the steps are the same, but the data varies.

1. In SAP GUI, run tcode CO02.

2. For Order number, type 60003706 and press Enter.

 80

3. Open Order > Settings > List control.

4. Uncheck all unnecessary lists, leave just LG01 selected and click Continue button or press
Enter.

 81

 82

5. Select Functions > Print (or press Ctrl+P).

6. Click the Save button or press Ctrl+S. ABAP Package sends a print request to the Loftware

integration server.

7. Run tcode SP01 and verify the result.

 83

Label sample with predefined data sources
The sample label for outbound delivery is included in the ABAP Package. This label contains all SAP data
sources from the production order (CAUFVD_P-*). You can import the data sources from this label to any
newly created label to save your time.

Look for label ProductionOrder.nlbl.

ABAP code examples

This chapter provides ABAP code snippets from the programs that are delivered with the ABAP Package to
better understand how you should establish communication from your ABAP programs with the ABAP
Package.

Creating basic print request
In the below coding we will demonstrate steps that are needed to generate a simple print request to
Loftware, which will contain two variables - MATERIAL and DESCRIPTION.

DATA: ls_request TYPE /nicelab/rqst_data_out, "Print Request structure

 ls_nl_label LIKE LINE OF ls_request-labels,

 ls_nl_item_t TYPE /nicelab/rqst_item_data_tt,

 ls_nl_item TYPE /nicelab/rqst_item_data.

DATA: lv_msg TYPE string.

DATA: lo_nl_api TYPE REF TO /nicelab/cl_interface_demo.

CLEAR: ls_request, ls_nl_label.

"fill print request header

ls_nl_label-header-format = 'Label.nlbl'. "Name of the label in Loftware Automation

ls_nl_label-header-preview_format = /nicelab/cl_if_util=>co_resp_format_pdf.

ls_nl_label-header-quantity = 1.

ls_nl_label-header-printername = 'NiceLabel_Printer'. "Name of the printer in Loftware

Automation

ls_nl_label-header-print = /nicelab/cl_if_util=>bool_2_tf(abap_true).

"fill request items (variables)

CLEAR ls_nl_item.

ls_nl_item-item_id = 'MATERIAL'.

ls_nl_item-item_value = '12345678'.

 84

APPEND ls_nl_item TO ls_nl_item_t.

CLEAR ls_nl_item.

ls_nl_item-item_id = 'DESCRIPTION'.

ls_nl_item-item_value = 'Demo Material'.

APPEND ls_nl_item TO ls_nl_item_t.

APPEND ls_nl_item_t TO ls_nl_label-data.

APPEND ls_nl_label TO ls_request-labels.

"create Loftware API object instance

CREATE OBJECT lo_nl_api.

"send a print request to Loftware

CALL METHOD lo_nl_api->do_print_xml

 EXPORTING

 i_nl_data = ls_request

 EXCEPTIONS

 print_error = 1

 OTHERS = 2.

IF NOT sy-subrc IS INITIAL.

 "get_response error

 CLEAR lv_msg.

 lo_nl_api->response_error_get(EXPORTING i_dialog = abap_false

 IMPORTING e_error_desc = lv_msg).

ENDIF.

Dynamically defining the endpoint
The ABAP Package always communicates with the Automation endpoint that receives the payload for label
printing.

• When you have just one Automation installed, you can define its endpoint in the configuration table
with the transaction /NICELAB/IF_CTRL.

• When you have multiple Automation servers, you must tell the ABAP Package which one should
receive the data at each execution. You can dynamically define the valid endpoint for each call of the
ABAP Package.

This sample ABAP code iterates through the list of endpoints and applies the endpoint to the ABAP Package
call. You can fill the list with available endpoint values that you maintain in one of your tables.

REPORT znicelab_multi_endpoint_sample.

* Loftware Interface - API - instance
DATA: go_nicelabel TYPE REF TO /nicelab/cl_interface_demo.

* Loftware Request
DATA: gs_nl_data TYPE /nicelab/rqst_data_out.

" Loftware operation mode
DATA: gt_nl_operation TYPE TABLE OF /nicelab/if_operation.

 85

DATA: gs_nl_operation LIKE LINE OF gt_nl_operation.

"internal table with endpoint list
CLEAR gs_nl_operation.
gs_nl_operation-operation_mode = /nicelab/cl_if_util=>co_op_mode_http.
gs_nl_operation-rfc = 'NL_RFC01'.
APPEND gs_nl_operation TO gt_nl_operation.
gs_nl_operation-operation_mode = /nicelab/cl_if_util=>co_op_mode_http.
gs_nl_operation-rfc = 'NL_RFC02'.
APPEND gs_nl_operation TO gt_nl_operation.
gs_nl_operation-operation_mode = /nicelab/cl_if_util=>co_op_mode_http.
gs_nl_operation-rfc = 'NL_RFC03'.
APPEND gs_nl_operation TO gt_nl_operation.

"process endpoint list
LOOP AT gt_nl_operation INTO gs_nl_operation.

 FREE: go_nicelabel, gs_nl_data.

 "create API instance with operation mode
 CREATE OBJECT go_nicelabel
 EXPORTING
 i_operation_mode = gs_nl_operation-operation_mode.

 "set endpoint name according to type (RFC/SOA)
 CASE gs_nl_operation-operation_mode.

 WHEN /nicelab/cl_if_util=>co_op_mode_soa.

 go_nicelabel->logical_port_set(gs_nl_operation-logical_port).

 WHEN /nicelab/cl_if_util=>co_op_mode_http.

 go_nicelabel->rfc_destination_set(gs_nl_operation-rfc).

 WHEN OTHERS.
 "nothing
 CONTINUE.

 ENDCASE.

 "fill Loftware request structure
* gs_nl_data-....

 "send request to Loftware
 CALL METHOD go_nicelabel->do_print_xml
 EXPORTING
 i_nl_data = gs_nl_data
 EXCEPTIONS
 print_error = 1

 86

 OTHERS = 2.
 IF sy-subrc <> 0.
 ENDIF.

ENDLOOP.

Creating report style print request
Below code in /NICELAB/CL_IF_ENH_PROC_DLVRY (-> PROCESS) class demonstrates how to generate and
send Report Style print request to Loftware. In order to generate a report style label, you must fill item_type
attribute in the items segment with constant "Report" (re-use
constant/nicelab/cl_if_util=>co_xml_itm_report). Additionally, you must fill item_position with the
respective line item position. All items (variables) that have the same position value belong to the same line
item section in the report label (the same row).

Outbound delivery
Look at the program we provide for outbound delivery.

Do the following

1. In SAP GUI, run tcode SE80.

2. Navigate to the program /NICELAB/OUTPUT_PROCESSING.

 87

3. See routine DELIVERY_OUTPUT and method lo_nl_dlvry->process.

4. This method contains an example, where we use SAP function RV_DELIVERY_PRINT_VIEW to read

data for items from the delivery, loop through LT_DLV_ITEM items, and fill data into ls_nl_item_t
table that contains name-value pairs.

 88

 89

5. Next, we send the complete envelope into the ABAP Package.

Demo application
We use a similar approach (as for the outbound delivery) also in the demo application.

Do the following:

1. In SAP GUI, run tcode SE80.

2. Navigate to _GENERATE_REQUEST_DATA as shown in the screenshot below.

3. The transfer of the name-value pairs (displayed in the table object on-screen) executes in the
_GENERATE_REQUEST_DATA method and data is sent out when executing the
SEND_PRINT_REQUEST method.

 90

Print programs
The ABAP Package delivers the following print programs to be used with the respective standard SAP
transactions. You can study these programs to see how we collect data (key-value pairs) and send them into
the ABAP Package API.

The provided print programs:

• /NICELAB/OUTPUT_PROCESSING. For Outbound Delivery (VL02n).

• /NICELAB/PSFC_OBJECT_LIST. For Production Order (CO02).

 91

Data exchange

This topic describes the structure of messages transferred between ABAP Package and Loftware
Automation, and the structure of Loftware Automation feedback.

Structure of XML data sent from ABAP Package

The XML as created by ABAP Package encapsulates the data and methods you are executing with Loftware
Automation. Each request from ABAP Package to Loftware Automation must include at least one method
but can contain many. For example, you can execute label preview and label print in the same request. The
methods you want to execute with Loftware Automation are configured with Boolean data types in the XML
“Header” part.

ABAP Package encapsulates the data received from the SAP application into the XML structure in two parts.

• Header. This element contains meta-data information, such as which method you want to execute in
Automation, which label to use, which printer to use, how many labels to print, etc. Frequently used
fields are FORMAT, QUANTITY, PRINTERNAME, JOBNAME, PRINT, PREVIEW, and PRINTERSTATUS.
You can include just the fields that are required for a specific API call. E.g., if you want to print a
label, you would include just FORMAT and PRINT.

There can be just one Header element.

• Data. This element contains name-value pairs for data fields in SAP applications. You would provide
the name and value for all fields you want to use on a label. You can provide as many name-value
pairs as you need, there is no limit on the number of items. The field name is provided in the attribute
Id, the field value is provided in the element value.

There can be many Data elements, each providing data for a new label or report.

Sample XML file:

<?xml version="1.0"?>
<LABELS>
 <Header>
 <FORMAT>label.nlbl</FORMAT>
 <QUANTITY>1</QUANTITY>
 <QUANTITY_IDENTICALCOPIES />
 <PRINTERNAME />
 <TRAY />
 <PRINTERSTATUS>False</PRINTERSTATUS>
 <JOBNAME />
 <USER>USER</USER>
 <SYSTEM>ECC</SYSTEM>
 <SYSTEM_TYPE>SAP</SYSTEM_TYPE>
 <PRINT>False</PRINT>
 <PREVIEW>True</PREVIEW>
 <PREVIEW_FORMAT>PDF</PREVIEW_FORMAT>
 <EMAIL_RECIPIENTS/
 <PRINTERS>False</PRINTERS>

 92

 <PRINT_JOB>False</PRINT_JOB>
 <VARIABLES>False</VARIABLES>
 <CATALOG>False</CATALOG>
 <CATALOG_ROOT>/Labels</CATALOG_ROOT>
 <DATAMODEL />
 <CLOUDPRINT />
 <CLOUD_APIKEY />
 <CLOUD_APIVERSION />
 <CLOUD_LABELVERSION />
 <PRINTERSETTINGS />
 <LABELSETTINGS />
 <VARIANTS />
 <VARIANTS_UNLOCKEDVARIABLES />
 <EXPORT_DATA />
 <CUSTOM1 />
 <CUSTOM2 />
 <CUSTOM3 />
 </Header>
 <Data>
 <Item Id="FIELD1">Loftware</Item>
 <Item Id="FIELD2">SAMPLE</Item>
 <Item Id="FIELD3">12345</Item>
 <Item Id="FIELD4">12345</Item>
 <Item Id="FIELD5">123456789012</Item>
 </Data>

The above XML requests a label preview (PREVIEW=True) for the label.nlbl label (FORMAT=label.nlbl) in
PDF format (PREVIEW_FORMAT=PDF).

Structure of “Header” element
See the structure /NICELAB/RQST_HEADER_OUT.

FIELD NAME FIELD DESCRIPTION

FORMAT Contains the name of the label file together with the file extension
(.NLBL).
NOTE: To request a specific version of a label, use parameter ?v=<revnum>
after the label name (where <revnum> is the revision number.

QUANTITY Defines the number of labels to print.

QUANTITY_IDENTICALCOPIES Defines the number of label duplicates to print. A default value is 1.

PRINTERNAME Defines the name of the printer where labels print. This must be the
exact printer name as installed on a Windows computer with
Loftware Automation.

TRAY Defines the name of a paper tray containing your media. Loftware
Automation will use media from this paper tray for printing.

PRINTERSTATUS Specifies whether to query the printer for its live status. This is a
Boolean field.

 93

JOBNAME Defines the name for the job file in Windows Spooler. If omitted, the
job name equals the name of the label file.

SPOOL_ID Reserved for future use.

USER Defines the user name. This is an optional field and is reserved for
future use.

SYSTEM Defines the system name. This is an optional field and is reserved
for future use.

SYSTEM_TYPE Specifies the system type. This is an optional field and is reserved
for future use.

PRINT Specifies whether to print the label. This is a Boolean field.
NOTE: When providing value True, make sure that at least one <Data>
element exists in the XML payload. In case of empty element, use the
syntax <Data></Data> (not the shorten variant <Data />).

PREVIEW Specifies whether to provide the label preview. This is a Boolean
field.
NOTE: When providing value True, make sure that at least one <Data>
element exists in the XML payload. In case of empty element, use the
syntax <Data></Data> (not the shorten variant <Data />).

PREVIEW_FORMAT Defines the format of the label preview. The available formats are
PDF, PNG, and JPEG. If you do not specify a format, PDF is
provided.

EMAIL_RECIPIENTS A comma-separated list of email addresses. When the label preview
is generated, it will be sent to these recipients. You must configure
and enable the email-sending action in Automation Configuration. A
sample action is provided, but you must fill in the details for your
infrastructure (e.g., SMTP server name, credentials).

PRINTERS Specifies whether to provide the list of printer drivers that are
available on the computer, where Loftware Automation runs. When
the header also contains CLOUD_APIKEY and CLOUD_APIVERSION
field, Automation will also return available cloud-connected printers.
This is a Boolean field.

PRINT_JOB Specifies whether to provide a binary print job back to SAP. The
print job contains the selected label and the provided master data
both converted to the label printer programming language. This is a
Boolean field.
NOTE: When providing value True, make sure that at least one <Data>
element exists in the XML payload. In case of empty element, use the
syntax <Data></Data> (not the shorten variant <Data />).

VARIABLES Specifies whether to provide a list of variables and their properties
from the selected label. This is a Boolean field.

CATALOG Specifies whether to provide a list of all labels (Label Catalog) from
DMS that are visible to Loftware Automation. This is a Boolean field.

CATALOG_ROOT Defines the starting folder from which the label catalog creates. By
default, all labels from the DMS will be included in the label catalog.
Example value: /Labels/DispatchLabels

 94

DATAMODEL Specifies whether to generate a file with a data model definition.
This is a Boolean field.
All name-value pairs from XML payload are converted into Loftware-
native .NLVR file that contains the definition of data sources
(variables). You can use .NLVR file to import variables into the label
template. A .NLVR file appears in the same folder where you have
your Automation configuration (.MISX file).

CLOUD_PRINT Specifies whether Automation should print a label directly to a
printer or using a Cloud Print API (available for cloud-connected
printers). You also have to provide a PRINT flag with value True.
This is a Boolean field.

CLOUD_APIKEY Defines the Cloud Print API subscription key. This is mapped from
OCP-APIM-SUBSCRIPTION key from the /NICELAB/IF_CTRO
configuration table.

CLOUD_APIVERSION Defines the version of the Cloud Print API to use. This is mapped
from API-VERSION key from the /NICELAB/IF_CTRL configuration
table. [DEPRECATED – The Automation configuration will
automatically use the appropriate version of the API]

CLOUD_LABELVERSION Defines the version of the label to print. Default is no version and in
that case, the latest approved version of the label template is used.

PRINTERSETTINGS Defines custom printer settings that are used to overwrite currently
applied printer settings. The printer settings are provided as a
Base64-encoded representation of the Windows printer driver
DEVMODE structure and must be compatible with the currently
selected printer driver. For more information, see
https://help.loftware.com/cloud/en/Content/Automation/UUID-
1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-
34af-a751-eb3a-eacb56c6486f and
https://help.loftware.com/cloud/en/Content/Automation/UUID-
b69d5885-4a40-dd10-e358-5d8db04b3725.html

LABELSETTINGS Defines custom label settings that are used at print time to
overwrite label settings defined in the label template (NLBL file),
such as number of labels per page, label width, label height, offsets,
label orientation etc. You must provide label settings in an XML
message as described in the Loftware documentation. For more
information, see:
https://help.loftware.com/cloud/en/Content/Automation/UUID-
1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-
34af-a751-eb3a-eacb56c6486f

VARIANTS Specifies whether Automation should create label variants. This is a
Boolean field.

VARIANTS_UNLOCKEDVARIABLES Defines the CSV list of variables (data sources) that must remain
unlocked in the generated label variants. All variables not specified
in this list will have their values hardcoded into the label template.

EXPORT_DATA Specifies whether to run custom actions within the EXPORT_DATA
placeholder in the Automation configuration. This is useful when
you want to save the data provided in the XML payload to some

https://help.loftware.com/cloud/en/Content/Automation/UUID-1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-34af-a751-eb3a-eacb56c6486f
https://help.loftware.com/cloud/en/Content/Automation/UUID-1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-34af-a751-eb3a-eacb56c6486f
https://help.loftware.com/cloud/en/Content/Automation/UUID-1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-34af-a751-eb3a-eacb56c6486f
https://help.loftware.com/cloud/en/Content/Automation/UUID-b69d5885-4a40-dd10-e358-5d8db04b3725.html
https://help.loftware.com/cloud/en/Content/Automation/UUID-b69d5885-4a40-dd10-e358-5d8db04b3725.html
https://help.loftware.com/cloud/en/Content/Automation/UUID-1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-34af-a751-eb3a-eacb56c6486f
https://help.loftware.com/cloud/en/Content/Automation/UUID-1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-34af-a751-eb3a-eacb56c6486f
https://help.loftware.com/cloud/en/Content/Automation/UUID-1f792d48-23f2-0ab8-ea2f-8bb54e13163a.html#UUID-c39f8bc8-34af-a751-eb3a-eacb56c6486f

 95

custom location (e.g., database, files). Automation configuration
provides an empty placeholder that you can configure yourself and
adapt to your use case.

CUSTOM1 .. CUSTOM3 These are flags that you can use to control the execution of custom
action workflows in the Automation configuration that you have
configured yourself. This allows you to easily expand the
Automation configuration for your requirements.

Structure of “Data” element
See the structure /NICELAB/RQST_ITEM_DATA.

For name-value pairs.

FIELD NAME FIELD DESCRIPTION
Item This is the XML element that contains name-value pairs. Value of “item”

specifies “value” component in name-value pair.
Attribute “Id” Specifies “name” component in the name-value pair.
Attribute “Type” This attribute is used for providing report-formatted data. It will have no value

when printing labels and will have the value “Report” when printing shipping
documents.

Attribute “Position” This attribute is used to identify the row number of the correspondent report
item.

Structure of Automation’s feedback message

The result of data processing in Automation is provided back to ABAP Package in a synchronous response.

Successful execution
If there is no error while processing the data, ABAP Package receives an XML-formatted message. The XML
message always contains all the elements, but some might be empty. For example, if you request a label
preview, the PrinterStatus, PrinterList, and other elements remain empty.

Response structure:

<?xml version="1.0"?>
<Feedback>
 <ResponseText />
 <PrinterStatus />
 <Preview />
 <PrinterList />
 <LabelVariables />
 <PrintJob />
 <LabelCatalog />
 <Custom1 />
 <Custom2 />
 <Custom3 />
</Feedback>

 96

Response parameters:

FIELD NAME FIELD DESCRIPTION

ResponseText Reserved for future use.

PrinterStatus Contains live status as received from the label printer. Depending on the
printer model and its state, the value might contain text descriptions “Out of
labels”, “Out of ribbon”, “Not accessible”, and similar. The format and
number of descriptions are printer-dependent.

Preview Contains base64-encoded label preview in the selected file format.

PrinterList Contains an XML list of printers visible to Loftware Automation. For the
XML structure, refer to the topic Structure of <PrinterList /> on page 97.

LabelVariables Contains an XML list of variables from the selected label and their
properties. For the XML structure, refer to the topic Structure of
<LabelVariables /> on page 98.

PrintJob Contains base64-encoded binary content for the print job. Loftware
Automation converts the selected label and the provided master data into
the print job. The print job c�ontains commands in the printer’s
programming language, such as ZPL or SPL (Zebra or SATO programming
language). Loftware Automation can create a print job for any printer if you
have installed the Windows driver for it.

LabelCatalog Contains an XML list of all labels from DMS that are accessible to Loftware
Automation.

Custom1 .. Custom3 These fields contain the custom data that you want to send back into ABAP
Package. These are optional fields.

Response type:

• RFC type G (HTTP trigger and Clout trigger) returns response in a HTTP body (as application/octet-
stream content type).

• SOA (Web Service trigger) returns a response in the SOAP message. This response is base64-
encoded.

Erroneous execution
If there is a processing error, such as “label not found”, “printer not available”, “wrong data for label objects”
and others, the trigger in Loftware Automation raises an error and sends details back in the trigger response.

The structure of the error response depends on the trigger type:

• Web Service trigger provides the result in <errorText> element.

 97

• HTTP trigger provides feedback in the HTTP header and the body of the message.

Structure of <PrinterList />
See the structure /NICELAB/IF_PRINTER_LIST.
There is a Printer/Name element for each printer.

FIELD NAME FIELD DESCRIPTION

Name The Name field can contain any of the following:

• Name of the Windows printer driver as visible to Loftware
Automation.

• Name of the cloud-connected printer as registered in Loftware
Control Center. You need a Loftware Cloud subscription for this
functionality.

CloudPrinter Specifies whether the current printer is a cloud-connected printer or printer
visible through Loftware Automation. This is a Boolean field.

Location Provides the printer location. This information is read from the Windows
printer driver “Location” field.

Example:

<Printer>
 <Name>SATO CL4NX 203dpi</Name>
 <CloudPrinter>False</CloudPrinter>
</Printer>
<Printer>
 <Name>ZEBRA R-402</Name>
 <CloudPrinter>False</CloudPrinter>
 <Location>Room 212</Location>
</Printer>
<Printer>
 <Name>ZEBRA ZD420-300dpi ZPL</Name>
 <CloudPrinter>True</CloudPrinter>

 98

 <Location>Site A</Location>
</Printer>

Structure of <LabelVariables />
See the structure /NICELAB/IF_LABEL_VARIABLE.
Also, see the topic Get Label Information in the Automation user guide.
There is a Variable element for each variable in the label.

FIELD NAME FIELD DESCRIPTION

Name Contains variable name.

Description Contains variable description.

DefaultValue Contains default value as defined for the variable during the label design
process.

Format Contains the acceptable type of variable content (characters).

IsPrompted Contains information whether the variable is prompted at a print time or not.

PromptText Contains text that prompts the user to input the value.

CurrentValue Contains the actual value that is used for printing.

IncrementType Contains information whether the variable is defined as a counter or not. If
identified as a counter, it tells what kind of counter it is.

IncrementStep Contains information about the counter step. Counter value
increments/decrements for this value on the next label.

IncrementCount Contains information about the point of counter value
incrementing/decrementing. Usually, the counter changes value on every
label, but that can be changed.

Length Contains a maximum number of stored characters in a variable.

IsPickListEnabled Contains information on whether the user selects variable values from a
picklist.

PickListValues Contains the actual (selectable) picklist values.

Example:

<Variable>
 <Name>FIELD1</Name>
 <Description />
 <DefaultValue>Loftware</DefaultValue>
 <Format>All</Format>
 <IsPrompted>True</IsPrompted>
 <PromptText />
 <CurrentValue>Loftware</CurrentValue>
 <IncrementType>None</IncrementType>
 <IncrementStep>0</IncrementStep>
 <IncrementCount>0</IncrementCount>
 <Length>20</Length>
 <IsPickListEnabled>False</IsPickListEnabled>
 <PickListValues>

https://help.nicelabel.com/hc/en-001/articles/360020970737-Other#get-label-information-1-1

 99

 <PickListValue>1</PickListValue>
 <PickListValue>2</PickListValue>
 <PickListValue>3</PickListValue>
 </PickListValues>
</Variable>

Structure of <LabelCatalog />
See the structure /NICELAB/IF_LABEL_LIST.
There is a Labels/Label element for each label in the DMS.

FIELD NAME FIELD DESCRIPTION

Name Name of the label including the path from the document storage root. The
server name and port number are not included, Loftware Automation knows
the location of its DMS.

Width Contains the label width in 1/1000 of a millimeter.

Height Contains the label height in 1/1000 of a millimeter.

PrinterName Contains printer name for which the label has been designed.
NOTE: You can specify another printer for printing. Loftware Automation adapts the
label template for the new printer type.

Description Contains the description as configured in the label.

Revisions Contains the version of the last accessible revision of the label template.
NOTE: Label visibility is determined by the role-based access control (RBAC). When
Loftware Automation runs as a member of the Operator profile (best practice), it can
only access the approved label revisions.

Example:

<Labels>
 <Label>
 <Name>/Demo/SAP ABAP Package/label.nlbl</Name>
 <Width>100000</Width>
 <Height>75000</Height>
 <PrinterName>CAB A3 203DPI</PrinterName>
 <Description></Description>
 <Revisions>4</Revisions>
 </Label>
…
</Labels>

 100

API reference

/NICELAB/ namespace

All SAP objects that enable communication with the Loftware Automation are developed inside the
/NICELAB/ namespace in package/development class /NICELAB/INTERFACE. This exclusive namespace
ensures code independence from the SAP core system or any custom development projects in your SAP
deployment that you might develop in the customer namespaces “Z” or “Y”.

The names of the Loftware custom-developed SAP objects do not get into conflict with the names of
standard SAP objects. The Loftware objects are also not subject to change if a patch is applied, or if an
upgrade is undertaken. Using the unique namespace not only prevents naming conflicts but also prevents
unauthorized modification of distributed objects that were built in the unique /NICELAB/ namespace.

ABAP class (API) methods

Loftware provides a standard interface class (API) for SAP, which enables the communication between SAP
ERP systems and Loftware Automation Enterprise.

API class /NICELAB/CL_INTERFACE_ROOT
API class – /NICELAB/CL_INTERFACE_ROOT – is an abstract class and, as such, cannot be used directly in
the customer application. To use the API in the customer application, a new class with
/NICELAB/CL_INTERFACE_ROOT as parent (super) class must be defined in the customer system. An
example child class /NICELAB/CL_INTERFACE_DEMO is also available as a part of the ABAP Package.

The next section describes public API class methods in detail:

/NICELAB/CL_INTERFACE_ROOT->CONSTRUCTOR

Importing Parameters:
I_OPERATION_MODE (TYPE /NICELAB/INTERFACE_OP_MODE): Interface operation mode – Web Service or
HTTP request (SOA/HTTP)

Description:
This is a constructor method of the API interface. API operation mode (SOA/HTTP) can be explicitly set for
the API instance via I_OPERATION_MODE importing parameter. If this is not provided, the default operation
mode is read interface configuration table.

/NICELAB/CL_INTERFACE_ROOT ->LOGICAL_PORT_SET

Importing Parameters:
I_LP (TYPE PRX_LOGICAL_PORT_NAME): Logical port

Description:
This method can be used to override the default logical port configured for the interface in the
/NICELAB/V_IF_CT configuration view. The method is only valid for Web Service operation mode (“SOA”).
This can be used in the calling application, to set the desired Loftware Automation target system.

 101

/NICELAB/CL_INTERFACE_ROOT ->RFC_DESTINATION_SET

Importing Parameters:
I_RFCDEST (TYPE RFCDEST): RFC destination of type G (External HTTP connection)

Description:
This method can be used to override the HTTP connection configured for the interface in the
/NICELAB/V_IF_CT configuration view. The method is only valid for HTTP operation mode (“HTTP”). This can
be used in the calling application to set the desired Loftware Automation target system.

/NICELAB/CL_INTERFACE_ROOT->DO_PRINT_XML

Importing Parameters:
I_NL_DATA (TYPE /NICELAB/RQST_DATA_OUT): Request Data
I_WITH_RESPONSE (TYPE BOOLEAN DEFAULT ABAP_TRUE): Get Response
I_WRITE_SPOOL (TYPE BOOLEAN OPTIONAL): Write Request/Response To Spool
I_SPOOL_TITLE_ADD (type STRING DEFAULT 'Request'): Spool Title Addition
I_CLOUD_TRIGGER (BOOLEAN, optional, DEFAULT ABAP_TRUE): Generate Cloud Trigger Request

Description:
This is the main method to send the print request data to Loftware Automation. Print request data contains
print meta-data information, such as preview type (PDF, JPG, etc.), request printer status attribute, number of
print copies, and the variable data to be printed. Print data is provided as name-value pairs which are defined
based on the printing application.

Depending on the interface operation mode – “SOA” (Web service) or “HTTP” (RFC type G) – the logical port
or RFC connection must be specified.

• For the “SOA” operation. If no port is specified, the default port from the configuration is used. If no
default PORT is found in /NICELAB/V_IF_CT, the port marked as default for
/NICELAB/CO_NL_AUTOMATION proxy class is used (defined and marked as default in
SOAMANAGER transaction).

• For the “HTTP” operation. If no RFC is explicitly specified, the default RFC from the configuration is
used. If no default RFC is found in /NICELAB/V_IF_CT, the call is aborted, and an exception is raised.

When using the I_WITH_RESPONSE parameter, the application can control if the response is returned for the
print request (this only applies for Web Service operation mode).
With parameter I_WRITE_SPOOL, the application can override the setting for logging the print
request/response data to the SAP spooler. If this parameter is not set, then the default setting for spool
generation is taken from the /NICELAB/V_IF_CT configuration view.

Method parameter I_SPOOL_TITLE_ADD is only used if Spool logging is enabled (see parameter
I_WRITE_SPOOL). The string specified here is added to the default spool title, depending on the spool
content (for example to add object key e.g., order number to the spool title, for easier monitoring).
Parameter I_CLOUD_TRIGGER is used to generate an HTTP request to a Loftware Cloud Trigger REST
service. When this parameter is set, additional HTTP headers are added to the HTTP request (API-VERSION,
OCP-APIM-SUBSCRIPTION-KEY). This parameter is not used with SOA requests.

/NICELAB/CL_INTERFACE_ROOT->RESPONSE_ERROR_GET

 102

Importing Parameters:
I_DIALOG (TYPE ABAP_BOOL): Show response error in a dialog
Returning Parameters:
E_ERROR_DESC (TYPE STRING): Error description (as string)

Description:
This method returns a description of the error, which might happen during the Loftware Automation print
process in the E_ERROR_DESC variable. If the I_DIALOG parameter is set, the error message is displayed in a
popup dialog.

/NICELAB/CL_INTERFACE_ROOT=>REQUEST_PREVIEW_XML

Importing Parameters:
I_NL_DATA (TYPE /NICELAB/RQST_DATA_OUT): Request Data

Description:
This method generates and displays XML request that is sent to Loftware Automation. This can be used for
evaluation purposes (for example, if the application data was correctly mapped to XML structure).

/NICELAB/CL_INTERFACE_ROOT=>GET_API_INSTANCE

Importing Parameters:
I_API (TYPE /NICELAB/IF_API): Loftware Interface API Type
IS_IF_OPERATION (TYPE /NICELAB/IF_OPERATION): Loftware Interface: Operation Mode
Returning Parameters:
EO_NL_API (TYPE REF TO /NICELAB/CL_INTERFACE_ROOT): Loftware Automation Interface (API) reference

Description:
This static method returns an instance of a requested API class type in specified operation mode. Different
API class types can be instantiated:

• LABEL – returns a reference to Loftware LABEL API Interface

• PRINTER - returns a reference to Loftware PRINTER API Interface

• DEMO - returns a reference to Loftware DEMO API Interface

/NICELAB/CL_INTERFACE_ROOT->GET_RESPONSE_TYPE

Importing Parameters:
I_FORMAT (TYPE /NICELAB/RESPONSE_FORMAT): Response Format
Returning Parameters:
RV_BIN_DATA (TYPE XSTRING): Loftware Interface: Operation Mode

Description:
This method returns the requested response type (PDF, JPG, or PNG) in binary format from the print request
response.

Class /NICELAB/CL_INTERFACE_DEMO
Part of the API interface package is also an example successor class of the API
/NICELAB/CL_INTERFACE_ROOT class. The example class is called /NICELAB/CL_INTERFACE_DEMO. For
additional usability, the example extends the basic ABAP Package interface with additional methods:

 103

/NICELAB/CL_INTERFACE_DEMO->PRINTER_STATUS_GET

Returning Parameters:
R_PRINTER_STATUS (TYPE STRING): Returns printer status in case of printer error.

Description:
If the printer status is requested in the original request to Loftware Automation, this method returns the
printer status description in case of errors.

/NICELAB/CL_INTERFACE_DEMO->RESPONSE_DISPLAY

Importing Parameters:
I_FORMAT (TYPE /NICELAB/RESPONSE_FORMAT): Response format (PDF, JPG, etc.)

Description:
If a print preview is specified in the request to Loftware Automation, this method can be used to read the
response and to present the result of a requested print. Different formats can be specified. The demo class
is implementing support for PDF response types.

/NICELAB/CL_INTERFACE_DEMO->PRINT_INFORMATION_GET

Returning Parameters:
R_PRINT_INFO (TYPE STRING): Returns print job information

Description:
Loftware Automation can provide additional information about the submitted print job. This method can be
used to read such information from the response.

Class /NICELAB/CL_IF_CONFIG
This class provides the interface to the Loftware interface configuration settings and can also be reused in
customer developments to read Loftware interface-specific settings.

/NICELAB/CL_IF_CONFIG=>CLASS_CONSTRUCTOR

Parameters:
N/A

Description:
Buffers the Loftware API Interface configuration table(s)

/NICELAB/CL_IF_CONFIG=>GET_LOGICAL_PORT

Returning Parameters:
R_VALUE (TYPE /NICELAB/IF_CONFIG_VALUE): Loftware Interface: Configuration Value

Description:
Returns logical port setting from the configuration (configuration key = 'SOA_LP')

 104

/NICELAB/CL_IF_CONFIG=>GET_RFC_DESTINATION

Returning Parameters:
R_VALUE (TYPE /NICELAB/IF_CONFIG_VALUE): Loftware Interface: Configuration Value

Description:
Returns RFC destination setting from the configuration (configuration key = 'HTTP_RFC')

/NICELAB/CL_IF_CONFIG=>GET_PRINTER_STATUS

Returning Parameters:
R_VALUE (TYPE /NICELAB/IF_CONFIG_VALUE): Loftware Interface: Configuration Value

Description:
Returns printer status (pooling True/False) from the configuration (configuration key = 'PRINTER_STATUS')

/NICELAB/CL_IF_CONFIG=>GET_OPERATION_MODE

Returning Parameters:
R_VALUE (TYPE /NICELAB/IF_CONFIG_VALUE): Loftware Interface: Configuration Value

Description:
Returns default (system wide) API operation mode from the configuration (configuration key =
‘OPERATION_MODE’)

/NICELAB/CL_IF_CONFIG=>GET_CONFIG_ID_VALUE

Importing Parameters:
I_CONFIG_ID (TYPE /NICELAB/IF_CONFIG_ID): Loftware Interface: Configuration ID
ReturningParameters:
R_VALUE (TYPE /NICELAB/IF_CONFIG_VALUE): Loftware Interface: Configuration Value

Description:
Returns configuration key value for requested configuration ID (I_CONFIG_ID)

/NICELAB/CL_IF_CONFIG=>GET_DATA_MODEL

Returning Parameters:
R_VALUE (TYPE /NICELAB/IF_CONFIG_VALUE): Loftware Interface: Configuration Value

Description:
Returns (system-wide) print request header setting to generate a variable data model from the print request
(configuration key = 'DATA_MODEL')

Class /NICELAB/CL_IF_UTIL
This class interface provides Loftware global constants and some common methods for string processing,
error display, etc.

 105

Constants:
CO_RESP_FORMAT_PDF (type /NICELAB/RESPONSE_FORMAT) value ‘PDF’
CO_RESP_FORMAT_PNG (type /NICELAB/RESPONSE_FORMAT) value ‘PNG’
CO_RESP_FORMAT_JPG (type /NICELAB/RESPONSE_FORMAT) value ‘JPG’
CO_OP_MODE_SOA (type /NICELAB/INTERFACE_OP_MODE) value 'SOA'
CO_OP_MODE_HTTP (type /NICELAB/INTERFACE_OP_MODE) value 'HTTP'
CO_XML_TRUE (type STRING) value ‘TRUE’
CO_XML_FALSE (type STRING) value ‘FALSE’
CO_MEM_ID_OP_MODE Memory ID for API operation mode
CO_API_LABEL (type /NICELAB/IF_API) value 'LABEL'
CO_API_DEMO (type /NICELAB/IF_API) value 'DEMO'
CO_API_PRINTER (type /NICELAB/IF_API) value 'PRINTER'
CO_OUTPUT_DEV_BIN (type RSPOPNAME) value ''NLBN' (Binary spool output device)
CO_OUTPUT_DEV_PDF (type RSPOPNAME) value 'NLRS' (PDF spool output device)
CO_MSGID_NICELABEL_IF (type MSGID) value ''/NICELAB/INTERFACE'
CO_ITEMID_VARIANT_FILENAME (type STRING) value '_VARIANT_FILENAME' (XML item ItemID constant in
case Create Variant option is activated)

/NICELAB/CL_IF_CONFIG=>STRING_TO_TAB

Importing Parameters:
IV_STRING (type STRING)
Returning Parameters:
ET_CTAB (type STANDARD TABLE)

Description:
Convert strings to the table

/NICELAB/CL_IF_CONFIG=>BOOL_2_TF

Importing Parameters:
I_BOOL (type BOOLEAN)
Returning Parameters:
R_TRUEFALSE (type STRING)

Description:
Convert ABAP Boolean value (‘X’, ‘’) to XML True/False

/NICELAB/CL_IF_CONFIG=>TF_2_BOOL

Importing Parameters:
I_TRUEFALSE (type STRING)
Returning Parameters:
R_BOOL (type BOOLEAN)

Description:
Converts XML Boolean value (‘True’, ‘False’) to ABAP Boolean value ('', 'X')

 106

/NICELAB/CL_IF_CONFIG=>CONV_STRING_2_ERROR_TAB

Importing Parameters:
I_TITLE (type /NICELAB/IF_S_NOTE-LINE optional)
I_ERROR (type STRING)
Returning Parameters:
RT_ERR_TAB (type /NICELAB/IF_NOTE_TAB)

Description:
Converts string to error table

/NICELAB/CL_IF_CONFIG=>MESSAGE_POPUP

Importing Parameters:
I_TITLE (type SYTITLE optional)
I_MESSAGE (type STRING)

Description:
Display message string (I_MESSAGE) in a popup dialog

/NICELAB/CL_IF_CONFIG=>GET_PROCESS_OBJ_CHAR

Importing Parameters:
I_OBJNUM (type OBJNUM): Object number
I_PROCESS (type /NICELAB/PROCESS optional SY-TCODE): Integrated Process (e.g., transaction code)
I_KEY01 (type /NICELAB/IF_PROC_KEY01 optional): Generic Key 1
I_KEY02 (type /NICELAB/IF_PROC_KEY02 optional): Generic Key 2
I_SPRAS (type SPRAS optional): Language
Returning Parameters:
RT_OBJ_CHAR (type /NICELAB/PROC_OBJ_CLAS_T) : Material characteristics

Description:
Reads the Loftware integrated process material characteristics configuration table /NICELAB/PROC_MC and
returns characteristics for all configured class / characteristic combinations.

/NICELAB/CL_IF_CONFIG=>GET_PROCESS_CONFIG

Importing Parameters:
I_PROCESS (type /NICELAB/PROCESS optional SY-TCODE): Integrated Process (e.g., transaction code)
I_KEY01 (type /NICELAB/IF_PROC_KEY01 optional): Generic Key 1
I_KEY02 (type /NICELAB/IF_PROC_KEY02 optional): Generic Key 2
I_USERNAME (type UNAME optional SY-UNAME): Username
Returning Parameters:
R_IF_PROC (type /NICELAB/IF_PROC): Loftware Interface: Process Settings

Description:

 107

This method can be used to read the Loftware integrated process configuration from the
/NICELAB/IF_PROC table. The method also considers generic entries in generic key fields and the username
field, meaning that the pattern entry using the '*' character can be used for creating more generic entries.

Class /NICELAB/CL_IF_PRINTER

This API class provides methods for retrieving printer information from Loftware Automation, for example,
reading connected printers (local and Cloud) and refreshing the Loftware printer list in SAP.

/NICELAB/CL_IF_PRINTER=> GET_LIST

Returning Parameters:
E_ERROR (type STRING): Error description
ET_PRINTER_LIST (type /NICELAB/IF_PRINTER_LIST_TAB): Printer List

Description:
This method sends a request to Loftware automation with header element <PRINTER>True</PRINTER> .
Such a request will return a list of all printers connected to Loftware Automation. If configuration IDs OCP-
APIM-SUBSCRIPTION-KEY and API-VERSION are configured, additional HTTP headers are sent to
Automation, and a list of returned printers will also contain Cloud-enabled printers.

/NICELAB/CL_IF_PRINTER=> REFRESH_PRINTER_LIST_SAP

Importing Parameters:
I_COMMIT (type BOOLEAN): Commit changes to DB

Description:
This method is used for refreshing a list of Loftware printers in the SAP system. List of printers is received
from Loftware Automation (see /NICELAB/CL_IF_PRINTER=>GET_LIST method) and stored in an SAP DB
table /NICELAB/IF_PRNT.

/NICELAB/CL_IF_PRINTER=> IS_CLOUD_PRINTER

Importing Parameters:
I_PRINTER_NAME (type STRING): Printer Name
Returning Parameters:
R_CLOUD (type BOOLEAN): Cloud Printer True/False

Description:
This method checks if the specified Loftware printer is a Cloud printer. This information is stored locally, in
the SAP system, in table /NICELAB/IF_PRNT (attribute CLOUD_PRINTER).

Class /NICELAB/CL_IF_LABEL

This API class provides methods for retrieving label information from Loftware automation.

 108

/NICELAB/CL_IF_LABEL=> GET_LIST

Returning Parameters:
E_ERROR (type STRING): Error description
ET_LABEL_LIST (type /NICELAB/IF_LABEL_LIST_TAB): Label List

Description:
This method sends a request to Loftware automation with header element <CATALOG>True</CATALOG>.
Such a request will return a list of all labels from the Loftware Automation repository.

/NICELAB/CL_IF_LABEL=> GET_LABEL_VARIABLES

Returning Parameters:
I_LABEL (type /NICELAB/LABEL): Label Name
I_DIALOG (type BOOLEAN): Execution in dialog
Returning Parameters:
ES_LABEL_VAR (type /NICELAB/IF_LABEL_VAR): Label Variables
E_ERROR (type STRING): Error description

Description:
This method sends a request to Loftware automation with header element <VARIABLES>True</VARIABLES>.
Such request will return a list of variables used on a specified label in exporting parameter ES_LABEL_VAR.
The error description is returned in the E_ERROR variable in case of errors. If the I_DIALOG parameter is set
to True ('X') the error message will be displayed in a popup dialog.

 109

Support

Online help

You can find the latest builds, updates, workarounds for problems, and Frequently Asked
Questions (FAQ) on the product website a www.loftware.com.

For more information, please refer to:

• User guides: https://help.loftware.com/cloud/en/Content/LoftwareCloud.htm

• Loftware Support: https://www.loftware.com/customer-center/technical-support/submit-a-support-
ticket

• Loftware trainings and tutorials: https://www.loftware.com/customer-center/training-and-tutorials

NOTE: If you have a Service Maintenance Agreement (SMA), please contact the premium support as specified in the
agreement.

Troubleshooting

Error creating logical port in transaction SOAMANAGER
When creating a logical port, you might receive the following error:
SRT Framework exception: Error in WSDL parsing: There was an exception in Library Handler

Error cause: SAP connected to the provided address where Web Service trigger is active in Loftware
Automation. However, the trigger response was not formatted in the way the ABAP Package expects it to
be.

The WSDL style in the trigger is not configured to “document”.
The reason for receiving this error message is that you are probably not running the Automation triggers
provided with ABAP Package. You have configured your triggers instead.

To resolve the issue:

1. Open the trigger configuration in Loftware Automation Builder.

2. Edit your Web Service trigger.

3. In the Settings tab, select Document for WSDL Style.

4. Save the trigger.

5. Deploy the new configuration.

Problem executing “Connection test” in SM59 transaction
SM59 transaction helps you configure the “HTTP connection to External Server”. This single configuration
step establishes communication between ABAP Package and Loftware Automation over the HTTP interface.
The result is the “RFC destination” to which ABAP Package forwards the requests from your application.

The SM59 transaction includes the “Connect Test” button, which sends data to the RFC destination. When
you execute a connection test, you receive an error response. You receive the 500 HTTP status response and

https://help.loftware.com/cloud/en/Content/LoftwareCloud.htm
https://www.loftware.com/customer-center/technical-support/submit-a-support-ticket
https://www.loftware.com/customer-center/technical-support/submit-a-support-ticket
https://www.loftware.com/customer-center/training-and-tutorials

 110

a status message containing the “Exception type:
EuroPlus.NiceLabel.Core.Exceptions.ActionException…”

Despite the error report, the test was executed successfully. You have received a response from Loftware
Automation, which means you have a clear communication path with Loftware Automation.

What you see is a standard response from Loftware Automation for a detected error. The “Connection Test”
button did not send the data formatted in an XML structure as Loftware Automation expected. Therefore, the
response is an error message.

To summarize, the error that you see after running the “Connection Test” proves that you can communicate
with Loftware Automation. To test your ABAP Package, run the provided demo program
/NICELAB/INTERFACE_DEMO. This program sends the XML data the way Loftware Automation expects it to
be.

Failing to create Label Catalog
When you set value of <CATALOG /> XML element to True (and optionally provide the starting folder with
<CATALOG_ROOT /> XML element), the label catalog does not create. An empty value or previous version of
the label catalog is returned.

NOTE: Label catalog creates with labels from the DMS, not from any other source location.

Label catalog is not created in the main trigger that receives data from SAP. Creating the label catalog might
take a while, so the process is asynchronous. The main trigger does not wait for a response. The label
catalog creation is offloaded to another trigger within the Loftware Automation configuration with the name
Label Catalog Async Updater. When the catalog is created, it is saved as an XML file in the folder with
Automation configuration.

Verify the following:

1. Is this the first time you have requested the label catalog? If yes, the empty catalog returns. When
the label catalog is created and saved to XML, the next request provides it.

2. If you have received the old label catalog (there are no new labels included in the catalog), the
creation process might not have been completed already. In Loftware Manager, see the live status of
the trigger Label Catalog Async Updater. If you see the progress indicator, the trigger is still busy
creating the catalog.

3. The previous label catalog generation might have failed and did not clear the signal file that prevents
the concurrent generation of catalog on several Automation servers.

Do the following:

 111

a. Make sure the Label Catalog Async Updater trigger is not currently in use (there must be no
progress indicator next to the trigger).

b. Do this check on each of your deployed Automation servers.

c. In Control Center, go to the Documents tab.

d. Navigate to the folder, where you saved the Automation configuration.

e. Delete the file LabelCatalogUpdateInProgress.txt.

Repairing ABAP Package enhancements after SAP upgrade
Customers continuously upgrade their SAP to newer versions/feature packs to benefit from feature
enhancements and bug fixes. During the upgrade, existing SAP standard objects are overwritten. Customers
can retain the modified object as in older systems or adapt to new changes through transactions SPAU and
SPAU_ENH.

ABAP Package contains the enhancement spot that hooks into the standard outbound delivery transaction
and invokes label printing through Loftware. All ABAP Package items are contained within /NICELAB/
namespace.

When running tcode SPAU_ENH after the SAP upgrade, it might display a red traffic light (manual
adjustment) next to the following items:
/NICELAB/ENH_IF_RVADDN01
/NICELAB/ENH_IF_RLE_DELNOTE

Customers cannot adjust these enhancements due to the missing change license for /NICELAB/
namespace. You might see the following errors:

• Namespace /NICELAB/ does not exist

• No valid change license exists for namespace /NICELAB/

These custom objects are no longer working and need an adjustment.

Do the following:

1. You must add the /NICELAB/ namespace in your system with a namespace repair key.

2. The repair key to use is 28595060430262820612.

3. The procedure to release a namespace for repairs is documented here:

a. If you see the error “No valid change license exists for a namespace /NICELAB/”:
https://help.sap.com/doc/saphelp_nw74/7.4.16/en-
us/bd/ddbe0bac5c11d2850e0000e8a57770/content.htm?no_cache=true

b. If you see the error “Namespace /NICELAB/ does not exist”:
https://help.sap.com/saphelp_snc700_ehp01/helpdata/en/bd/ddbe08ac5c11d2850e0000e
8a57770/content.htm?no_cache=true
Make sure to use “C - Recipient” for the namespace role.

Then the enhancement point adjustments should work.

https://help.sap.com/doc/saphelp_nw74/7.4.16/en-us/bd/ddbe0bac5c11d2850e0000e8a57770/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw74/7.4.16/en-us/bd/ddbe0bac5c11d2850e0000e8a57770/content.htm?no_cache=true
https://help.sap.com/saphelp_snc700_ehp01/helpdata/en/bd/ddbe08ac5c11d2850e0000e8a57770/content.htm?no_cache=true
https://help.sap.com/saphelp_snc700_ehp01/helpdata/en/bd/ddbe08ac5c11d2850e0000e8a57770/content.htm?no_cache=true

	Introduction
	Distribution of the ABAP Package

	Requirements
	Architecture
	Overview
	Loftware Automation configurations
	Label design
	Label print and data mapping

	Setting up the integration
	Deploying Loftware Automation
	Installing Loftware Automation
	Deploying triggers
	Configuring Windows Firewall
	Configuring TLS/SSL encrypted communication (HTTPS traffic)
	Generating a subscription key to consume Loftware Cloud APIs

	Importing ABAP Package transport request
	Upgrading the ABAP Package
	Incompatibilities between versions

	Configuring Destination in SAP
	Configuring SOA (Web Service) destination
	Configuring HTTP (RFC) destination (on-premise)
	Configuring HTTP (RFC) destination (Cloud trigger)
	TLS/SSL certificates

	Configuring the ABAP Package
	Configuring system-wide defaults
	Configuring transaction (process) defaults
	Structure of “Integrated Process Configuration” table

	Enabling enhancement spots
	Enabling built-in output devices in SPAD
	Support for PI/PO
	Configuring SAP PI
	Triggering print request via SAP PI

	Support for Cloud Platform Integration (CPI)
	Configuring SAP Integration Suite
	Configuring access permissions
	Configuring logical port
	Configuring Cloud Trigger access

	Using ABAP Package features
	Configuring the demo transaction
	Using the demo transaction
	Requesting a list of printers
	Printing a label or report
	Printing labels to cloud printers
	Previewing a label or report
	Emailing label preview

	Adjusting label settings at print-time
	Checking printer live status
	Overrides
	Overriding print settings (label template, printer name, quantity)
	Overriding printer settings
	Overriding email settings

	Logging data to SAP Spooler (SP01)
	Defining your own Output Device for print jobs in SAP Spooler

	Printing binary print jobs from SAP
	Providing a label name
	Creating a label catalog
	Requesting label catalog for Loftware Cloud
	Requesting label catalog for NiceLabel LMS

	Requesting a list of variables from the label
	Generating a field catalog
	Support for label variants
	Exporting data
	Communication extendibility

	Configuring transaction to call ABAP Package
	Enhancement spots
	Example for outbound deliveries (VL02n)
	Creating a new output type
	Using the new output type for processing
	Label sample with predefined data sources

	Example for production order (CO02)
	Configuring the system
	Printing labels
	Label sample with predefined data sources

	ABAP code examples
	Creating basic print request
	Dynamically defining the endpoint
	Creating report style print request
	Outbound delivery
	Demo application
	Print programs

	Data exchange
	Structure of XML data sent from ABAP Package
	Structure of “Header” element
	Structure of “Data” element

	Structure of Automation’s feedback message
	Structure of <PrinterList />
	Structure of <LabelVariables />
	Structure of <LabelCatalog />

	API reference
	/NICELAB/ namespace
	ABAP class (API) methods
	API class /NICELAB/CL_INTERFACE_ROOT
	Class /NICELAB/CL_INTERFACE_DEMO

	Support
	Online help
	Troubleshooting
	Error creating logical port in transaction SOAMANAGER
	Problem executing “Connection test” in SM59 transaction
	Failing to create Label Catalog
	Repairing ABAP Package enhancements after SAP upgrade

